
Real-world ML use cases

Agenda

• NLP models for Customer Support 

• Model retraining strategies 

• Gran Neural Networks for dish/restaurant recommendation 

• Learning from recommender system deployment 

• Lessons learned from real-world data collection

Piero Molino
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COTA v1: classical NLP + ML models

○ Faster and more accurate customer care experience
○ Million $ of saving while retaining customer satisfaction

COTA v2: deep learning models

○ Experiments with various deep learning architectures
○ 20-30% performance boost compared to classical models

Main Takeaways



COTA Blog Post and followup, KDD paper
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What is the challenge?
As Uber grows, so does our volume of support tickets

Millions of tickets from 
riders / drivers / eaters 
per week

Thousands of different 
types of issues users 
may encounter



User

CSRContact 
Ticket

Response

Select Flow Node

Write Message Select
Contact Type

Lookup info &
Policies

Select ActionWrite response using 
a Reply Template

Uber Support Platform



What is the challenge?
And it is not easy to solve a ticket 

1000+ types
in a hierarchy
depth: 3~6

10+ actions (adjust fare, add appeasement, …)

1000+ reply templates
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SUGGESTED CONTACT TYPES

Driver > Account > Unable to sign in or go online > Account inactive

Driver > Account > Profile > Unsubscribe > SMS or Text

Driver > Account > Vehicles > Edit vehicle class 

Reorder actions in relevance

Surface top-3 most-relevant reply templates

COTA v1: Suggested Resolution
Machine learning models recommending the 3 most relevant solutions



Multiclass 
classification

Pointwise 
ranking

E.g., User type

E.g., ETA, city

E.g., Ticket 
creation time, 
product type

COTA v1 Model Pipeline

Information 
about the 
contact type or 
reply, obtained 
from all tickets 
belonging to it 



cosine similarity

To
pi
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#i

Topic #j

Ticket
CT1

CT2

Multi-class Classification Pointwise Ranking

Tickets 
Features

Label (CT1, CT2)

t1 features CT1

t2 features CT2

Tickets Features Type Features Sim (t, CT) Label (0, 1)

t1 features CT1 features 0.8 1

t1 features CT2 features 0.1 0

t2 features CT1 features 0.2 0

t2 features CT2 features 0.7 1

Ranking allows us to include features of candidate 
types and similarity features between a ticket and a 
candidate type

Model: Random Forest with hyperparameters 
optimized through grid search

From Classification to Ranking



6% absolute (10% relative) improvement

Hits@3: any of the top 3 suggestions is selected by CSRs

Performance Comparison



Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Agenda



Input Encoders Combiner Output Decoders

Generic architecture, reusable in many different applications.
We are considering open-sourcing it!

Text 
features

Categorical  
features

Numerical  
features

Encoder Decoder

Categorical  
features

Text 
features

Decoder

Binary  
features

Encoder

Encoder

Encoder
Combiner

Numerical  
featuresDecoder

Set  
features Encoder

Sequential  
features Encoder

Binary  
featuresDecoder

Set  
featuresDecoder

Sequential  
featuresDecoder

COTA v2: Deep Learning Architecture
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COTA v2: Text Encoding Models

Char / Word CNN RNNChar CNN Char / Word RNNWord CNN
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Which text encoder?
Hyperparameter search for contact type classification

Model Validation accuracy
Training time per 
epoch in minutes

CharCNNRNN opt 0.4805 35

WordCNN opt 0.4733 4

WordRNN opt 0.4713 17

WordCNNRNN opt 0.4615 12

CharCNN opt 0.4598 5

WordCNN is the best compromise between performance and speed

20%+ over Random Forest used in COTA v1 and ~10x faster than CharCNNRNN



Sequence Model for Type Selection
Predict the sequence of nodes instead of leaf node

Use a Recurrent Decoder to predict sequences of nodes in the contact type tree

Pick the last class before <eos> as prediction

Model makes more reasonable mistakes

CT0

CT1

CT2

CT3

CT4

CT5

CT6

CT7

CT8

CT9

Combiner
Output RNN RNN RNN RNN

CT0 CT3 CT4 CT8

EOSCT3 CT4 CT8

Example: Driver > Trips > Pickup and drop-off issues > Cancellation Fee > Driver Cancelled 



Text features
e.g. message

Categorical features
e.g. flow node

Numerical features
e.g. trip fare

Final Architecture
Multi-task sequential learning

TYPE REPLY

Train
ground-truth

TYPE

REPLY

TYPE REPLY

Test
predicted

Convolution 
layers

Embedding
layer

Batch-norm
layer

Binary features
e.g. is completed

FC + 
Dropout

layers

Recurrent 
Decoder

Softmax 
layer



Effect of Adding Dependencies Between Tasks

Adding the dependency from Type 
to Reply improves accuracy

It also improves a lot the 
coherence between the two 
models, increasing combined 
accuracy consistently

Combined accuracy computed 
requiring both Type and Reply 
model to be correct at the same 
time
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COTA v2 is consistently more 
effective than COTA v1 on all 
metrics for both models

The combined accuracy in 
particular shows an absolute  
~+9% (relative +~20%)

COTA v1 vs. COTA v2 offline comparison



COTA v1 vs. COTA v2 A/B Test



COTA v2 is 20-30% more 
accurate than COTA v1 in 
online A/B tests

COTA v1 reduces handling 
time of ~8%, while COTA v2 
provides an additional ~7% 
reduction, more than ~15% 
overall reduction

Statistically significant 
customer satisfaction 
improvement

COTA v1 vs. COTA v2 A/B Test



Threshold on Type Model Confidence



Threshold on Both Models’ Confidence



95% accuracy → 10% coverage
90% accuracy → 20% coverage

Coverage vs. Maximum Accuracy



Conclusions

Moving from traditional 
to deep learning 
models, we observe a 
substantial 
performance boost 
(up to 30%)

Using intelligent 
suggestions we were 
able to reduce ticket 
handling time without 
impacting customer 
satisfaction

Using NLP & ML COTA 
makes customer care 
experience faster and 
more accurate while 
saving Uber millions 
of $



Model degradation

Distribution shift in the real world 

• Bugs get solved, probability of a issue type can 
decrease 

• New products can be added (UberPool) so new 
issue types appear 

Older data becomes noise

• We often talk about distribution shift in the test set, 
but the test set of a month ago is the training set now



Retraining Strategy

Dealing with distribution shift is an open research topic 

In practice in most cases the safest route is just 
retraining the model 

But... 

• How often to retrain? 

• What triggers retraining? 

• With how much data?



Offline simulation: time-based split

Time
Jan Feb Mar Apr

Dataset

Training

Test



Offline simulation: split in weeks

Time
Jan Feb Mar Apr

Dataset

Train

Test Test Test Test

TrainTrainTrainTrainTrainTrainTrain
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Offline simulation
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Retraining Strategy

How often to retrain? With how much data?

0

0,225

0,45

0,675

0,9

week+1 week+2 week+3 week+4
0

0,225

0,45

0,675

0,9

week-8 week-6 week-4 week-2



Online Retraining

What triggers retraining? 

Used learnings from offline simulation 

Retrained when performance dropped below 
performance on the test set at training original 
training time - 8% (relative) 

Retrained with 1.5 months of training data, as we 
learned from the offline simulation that more was 
detrimental to performance



COTA Team
Cross-functional collaboration

AI Labs
Applied Machine Learning
Customer Obsession
Michelangelo
Sensing and Perception



Enhancing Recommendations on 
Uber Eats with Graph Convolutional 
Networks
Ankit Jain/Piero Molino

ankit.jain/piero@uber.com



Agenda
1. Graph Representation Learning

2. Dish Recommendation on Uber Eats

3. Graph Learning on Uber Eats



Graph 
Representation 
Learning



Linked Open Data

Graph data

Social networks Biomedical networks

Information networks Internet Networks of neurons



Tasks on graphs

Node classification
Predict a type of a given node

Link prediction
Predict whether two nodes are linked

Community detection
Identify densely linked clusters of nodes

Network similarity
How similar are two (sub)networks



Define an encoder mapping from 
nodes to embeddings

Define a node similarity function based 
on the network structure

Optimize the parameters of the 
encoder so that:

Learning framework

embedding spaceoriginal graph



Simplest encoding approach: encoder is just an embedding-lookup

Algorithms like Matrix Factorization, Node2Vec, Deepwalk fall in this category

Embedding 
size

One column per node 

embedding 
matrix

embedding vector for a specific node

Shallow encoding



Shallow encoding limitations

O(|V|) parameters are needed, every node 
has its own embedding vector

Either not possible or very time consuming 
to generate embeddings for nodes not 
seen during training

Does not incorporate node features



Graph Neural Network
Key Idea: To obtain node representations, use a neural network to aggregate 
information from neighbors recursively by limited Breadth-FIrst Search (BFS)
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train with snapshot new node arrives generate embedding 
for new node

Inductive capability

In many real applications new nodes are often added to the graph

Need to generate embeddings for new nodes without retraining 

Hard to do with shallow methods



Dish Recommendation 
on Uber Eats



Suggested 
Dishes

Recommended Dishes
Carousel Picked for You











Graph Learning in 
Uber Eats



Users connected to dishes they have 
ordered in the last M days

Weights are frequency of orders

Graph properties

Graph is dynamic: new users 
and dishes are added every day

Each node has features, e.g. 
word2vec of dish names

3

1

4

Bipartite graph for dish recommendation

U1

U2

D1

D2



positive 
pair

negative
sample

margin

For dish recommendation we care about ranking, not actual similarity score

Max Margin Loss:

Max Margin Loss



New loss with Low Rank Positives

U1

U2

D2

D4

D1

D3
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2
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3

U1 D1

Positive Negative Low Rank Positive

U1 D4 U1 D3



Weighted pool aggregation

Aggregate neighborhood embeddings based on edge weight

hD hB

hA

hC

5

2

1

Q

Q

Q

denotes a fully connected layer



Model Test AUC

Previous 
production model 0.784

With graph 
embeddings 0.877

Offline evaluation

Trained the downstream Personalized 
Ranking Model using graph node 
embeddings

~12% improvement in test AUC over 
previous production model



Feature Importance

Graph learning cosine similarity is 
the top feature in the model 



Online evaluation

Ran a A/B test of the Recommended Dishes Carousel 
in San Francisco

Significant uplift in Click-Through Rate with respect to 
the previous production model

Conclusion: Dish Recommendations with graph 
learning features are live in San Francisco, soon 
everywhere else



ServingTraining Pipeline Step 2Training Pipeline Step 1

Data Pipeline Step 1

Table 1Table 1Source 
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Data Pipeline Step 4
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Past Date

GNN Model 
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Ranker Model 
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Node 
Embeddings
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Personalized 
Ranker Online 

Recommendation



More Resources

Uber Eng Blog Post

Learn better representation in data scarcity 
regimes like small/new cities through 
meta-learning [NeurIPS Graph Representation 
Learning Workshop 2019]



Learnings

In complex data pipelines, the model isn't always the 
bottleneck

• Graph processing was more expensive than model 
inference because of sheer size 

Even when the model (or the data proc + model) is the 
bottleneck you can often precompute and cache 

• Precomputed a big LRU cache of user-to-dish/
restaurant similarities. It was recomputed entirely only 
when the model was updated and refreshed after user 
ordered



Learnings: online evaluation issues

Q: Despite big offline gains, only got small 
improvement in Click through rate and orders (still 
statistically significant and worth millions of dollars), 
why? 

A: Our recommendations where a small part of the UI, 
"favourite restaurants" and "Daily Deals" came always 
first in the UI and gathered most of clicks and orders. 
Bewre how you choose the denominator of your 
metrics! 
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Learnings: online evaluation issues

Q: Why is it hard to show big online gains in 
recommender systems in general? 

A: If there's a model in production your are comparing 
against, you are likely using biased data for both 
training and prediction!
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Learnings: data bias

The world changes (new restaurants and dishes) -> 
ML lifecycle is a loop 

The user behavior changes (now that my favorite 
pizza place is on the app, I start always ordering 
from there) 

Model deployment changes user behavior (the 
items the model suggest influence your behavior) 

Biased training data and biased evaluation data



Learnings: data bias

Q: How to collect unbiased data? 

A: Complicated, one option is to show random 
recommendations to x% of users



Learnings: data bias

Q: How to collect unbiased data? 

A: Complicated, one option is to show random 
recommendations to x% of users



Learnings: data bias

Q: What is the cost of collecting unbiased data? 

A: The likelyhod of those users actually selecting those 
items is very low -> small positive data is collected, 
those users may not buy anything -> the company 
looses money!



Learnings: data bias

Q: What is the cost of collecting unbiased data? 

A: The likelyhod of those users actually selecting those 
items is very low -> small positive data is collected, 
those users may not buy anything -> the company 
looses money!



Learnings: data bias

Q: What could be compromise solutions? 

A: Show to users random predictions from within the 
top 100 predicted by the model. Data is still biased, 
but more likely to collect unexpected positive 
datapoints.
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Restaurant preparation time
The data generation process
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Restaurant preparation time
The data generation process

Predict restaurant preparation time is 
useful, I can decide when to dispatch 
the driver to reduce wait! (If I can also 
predict when the driver will arrive) 

• How do you know when a restaurant 
is done preparing? 

• The driver can arrive early, in which 
case the preparation time is from 
initial order to order pickup 

• If the driver arrives late, and the dish 
is already prepared, the order pickup 
time is a upper bound

Time

User orders

Restaurant 
prepares

Driver 
dispatch

Dirver 
arrives

Order 
delivered

User

Restaurant

Driver

User

Driver 
arrives

Order 
pickup



Restaurant preparation time modeling

We tried trainign a model anyway using 
order pickup 

Huge variance in the training data -> 
Huge variance in predictions! 

Our model was 5min more acurate 
than previous one, but with stddev +- 
10min!

Mean absolute error
0 2 4 6 8 10 12 14 16 18 20+

XGboost NewModel



Restaurant preparation time variance

Drilled into the data to understand 
the source of variance 

Same restaurant, same day, same 
order, few minutes after -> 20min 
prep time vs 2min prep time 

Why?

Restaurant Order Day Time Prep Time

POD Thai Pho Soup Tuesday 2nd 19:10 20m

POD Thai Pho Soup Tuesday 2nd 19:15 2m



Restaurant preparation time new feature

Restaurants batch orders! 

Theory: They prepare a big amount of 
soup when first ordered, the next soup 
order will take much less because they 
are already prepared 

Added a feature in the model: 

were items in the order ordered in the 
last x minutes? 

Improved predictions by 2min, reduced 
stddev by 1/3 (still a lot)

Mean absolute error
0 2 4 6 8 10 12 14 16 18 20+

XGboost
NewModel
NewModel + feat



Restaurant preparation time moral

Went back to data collection, asked 
restaurants to notify us when the order 
was ready 

Still noisy data (restaurants have no 
incentive to be precise, or they forget 
entirely), but better estimate 

Moral: ML lifecycle is a loop and you 
can go back to the data collection 
process even after deployment, and 
iterate the process multiple times



What am I working on now

@Stanford with Chris Ré 

Ludwig: declarative multimodal deep learning 
pipeline toolbox  (no code needed, extensible, 
AutoML capabilities) 

For a talk about Ludwig you can check my 
website http://w4nderlu.st or the last Stanford 
MLSys Seminar Series episode http://
mlsys.stanford.edu 

Founded a company to make ML accessible 
to less technical people: AutoML + end-to-end 
platform built on Ludwig + secret spicy sauce!

http://w4nderlu.st

