Real-world ML use cases Piero Molino

Agenda

- NLP models for Customer Support
- Model retraining strategies
- Gran Neural Networks for dish/restaurant recommendation
- Learning from recommender system deployment
- Lessons learned from real-world data collection

<u>C</u>ustomer <u>O</u>bsession <u>Ticket A</u>ssistant

Improving Uber Customer Support with Natural Language Processing and Deep Learning

Piero Molino | AI Labs Huaixiu Zheng | Applied Machine Learning Yi-Chia Wang | Applied Machine Learning

Main Takeaways

COTA v1: classical NLP + ML models

 \bigcirc \bigcirc

COTA v2: deep learning models

 \bigcirc

Faster and more accurate customer care experience Million \$ of saving while retaining customer satisfaction

Experiments with various deep learning architectures • 20-30% performance boost compared to classical models

COTA Blog Post and **followup**, **KDD paper**

Secure https://eng.uber.com/cota/

Uber Engineering Updates: email address

UBER Engineering

CATEGORIES

Architecture

AI

Uber Data

Open Source

Mobile

General Engineering

Team Profile

Culture

COTA: Improving Uber Customer Care with NLP & Machine Learning

By Huaixiu Zheng, Yi-Chia Wang, & Piero Molino January 3, 2018

Agenda

Motivation and Solution Complexity of Customer support @Uber COTA v1: Traditional ML / NLP Models Multi-class Classification vs Ranking COTA v2: Deep Learning Models Deep learning architectures COTA v1 vs COTA v2

Agenda

Motivation and Solution Complexity of Customer support @Uber COTA v1: Traditional ML / NLP Models Multi-class Classification vs Ranking COTA v2: Deep Learning Models Deep learning architectures COTA v1 vs COTA v2

What is the challenge? As Uber grows, so does our volume of support tickets

Millions of tickets from riders / drivers / eaters per week

Thousands of different types of issues users may encounter

Uber Support Platform

What is the challenge? And it is not easy to solve a ticket

cancelled I WI WOOD I WIGHT 2 hours ago UPDATED CONTACT STATUS TO OPEN Driver > Activations & Docs Concern 2 hours ago **Please Assist** UPDATED CONTACT TYPE TO DRIVER > ACCOUNT > UNABLE TO SIGN IN OR GO ONLINE > ACCOUNT INACTIVE > BACKGROUND CHECK NOT PASSED > BACKGROUND CHECK CANCELLED 21 minutes ago UPDATED CONTACT STATUS TO OPEN 21 minutes ago CHANGE DRIVER STATUS SOMETHING ELSE -ADD DRIVER NOTE OR WANT TO

Agenda

Motivation and Solution Complexity of Customer support @Uber **COTA v1: Traditional ML / NLP Models Multi-class Classification vs Ranking** COTA v2: Deep Learning Models Deep learning architectures COTA v1 vs COTA v2

COTA v1: Suggested Resolution Machine learning models recommending the 3 most relevant solutions

Contact us for rider su Driver > Account > Unable to cancelled	Jpport () sign in or go online > Account inactive > Background check no	ot passed > Backgrour
2 hours ago		
NK	UPDATED CONTACT STATUS TO OPEN	
2 hours ago	Driver > Activations & Docs Concern	
	Please Assist	
JB	UPDATED CONTACT TYPE TO DRIVER > ACCOUNT > UNABLE ONLINE > ACCOUNT INACTIVE > BACKGROUND CHECK NOT P	TO SIGN IN OR GO PASSED >
IB	UPDATED CONTACT STATUS TO OPEN	
21 minutes ago		
I WANT TO ADD DRIVER NO	OTE CHANGE DRIVER STATUS OR SOMETHING ELSE -	,
<		
Suggested Replies		
Explain - license verification		
Explain - invalid SSN		
Confirm - Jira submitted		
All Saved Replies		

Evolain - re-concent needed

COTA v1 Model Pipeline

From Classification to Ranking

Multi-class Cla	assification		Pointwise Rank	king		
Tickets	Label (CT1, CT2)		Tickets Features	Type Features	Sim (t, CT)	Label (0, 1)
reatures			t1 features	CT1 features	0.8	1
t1 features	CT1				0.0	-
			t1 features	CT2 features	0.1	0
t2 features	CT2					•
			t2 features	CI1 features	0.2	0
			t2 features	CT2 features	0.7	1
Ranking allows us to include features of cand types and similarity features between a tick candidate type		didate ket and a ¥	Ticket CT1	Sine similarity		
Model: Random Forest with hyperparameter optimized through grid search			rs H	Topic #j	CT2	

Performance Comparison

6% absolute (10% relative) improvement

Hits@3: any of the top 3 suggestions is selected by CSRs

Agenda

Motivation and Solution Complexity of Customer support @Uber COTA v1: Traditional ML / NLP Models Multi-class Classification vs Ranking **COTA v2: Deep Learning Models Deep learning architectures** COTA v1 vs COTA v2

COTA v2: Deep Learning Architecture

Input Encoders Combiner Output Decoders

Generic architecture, **reusable** in many different applications. We are considering open-sourcing it!

Documentation http://ludwig.ai

Repository http://github.com/uber/ludwig

Blogpost http://eng.uber.com/introducing-ludwig http://eng.uber.com/ludwig-v0-2/ http://eng.uber.com/ludwig-v0-3/

White paper https://arxiv.org/abs/1909.07930 Key contributors Travis Addair Yaroslav Dudin Sai Sumanth Miryala Jim Thompson Avanika Narayan Ivaylo Stefanov John Wahba Doug Blank Patrick von Platen Carlo Grisetti

Boris Dayma

COTA v2: Text Encoding Models

Which text encoder?

Hyperparameter search for contact type classification

WordCNN is the **best compromise** between **performance** and **speed 20%+** over Random Forest used in COTA v1 and ~**10x** faster than CharCNNRNN

	Model	Validation accuracy	Training time epoch in min
	CharCNNRNN opt	0.4805	35
	WordCNN opt	0.4733	4
	WordRNN opt	0.4713	17
	WordCNNRNN opt	0.4615	12
	CharCNN opt	0.4598	5
0			

0.500

e per utes

Sequence Model for Type Selection Predict the sequence of nodes instead of leaf node

Example: Driver > Trips > Pickup and drop-off issues > Cancellation Fee > Driver Cancelled

Use a Recurrent Decoder to predict **sequences of nodes** in the contact type tree

Pick the last class before <eos> as prediction

Model makes more reasonable mistakes

Final Architecture Multi-task sequential learning

Effect of Adding Dependencies Between Tasks

Adding the dependency from Type to Reply improves accuracy

It also improves a lot the **coherence** between the two models, increasing combined accuracy consistently

Combined accuracy computed requiring both Type and Reply model to be correct at the same time

Outline

Motivation and Solution Complexity of Customer support @Uber COTA v1: Traditional ML / NLP Models Multi-class Classification vs Ranking COTA v2: Deep Learning Models Deep learning architectures COTA v1 vs COTA v2

COTA v1 vs. COTA v2 offline comparison

COTA v2 is **consistently more effective** than COTA v1 on **all metrics** for **both models**

The combined accuracy in particular shows an absolute **~+9%** (relative **+~20%**)

COTA v1 vs. COTA v2 A/B

had an issue with my der > Trips > Pickup and drop	picku off is:	p 🕕 sues > Cancellation Fee		Control	SKIP 👻	I had an issue with my pi Rider > Trips > Pickup and drop-o	ckup ff issue	Cancellation Fee	Treatment
Please set a contact type Rider > Trips > Pickup and Search Contact Typ	that b i drop e	est represents the user's is -off issues > Cancellation F	sue: Tee		SET	Please set a contact type the Rider > Trips > Pickup and a search Contact Type	at bes trop-c	st represents the user's issue: off issues > Cancellation Fee	S
Cleaning fee	>	Fare review	>	Brought to wrong destination	Cancellat	Rider > Trips > Pickup and	d drop	-off issues > Cancellation Fee > Driver c	ancelled
Cross Support - General	>	Feedback about driver	>	Cancellation Fee >	Couldn't	Didor & Trips & Diskup and	dron	off issues & Cancellation Fee & Cancella	tion policy.
Cross Support - Safety	>	Feedback about vehicle	>	Had to walk to pickup or destination	Driver ar	Rider > Trips > Pickup and	a arop	-off issues > cancellation ree > cancella	tion policy
Duplicate contact	>	Invoice	>	No cars available >	Driver ca	Rider > Trips > Pickup and	d drop	-off issues > Cancellation Fee > Couldn't	find or get to driver
Info	>	Lost items general info		Pickup difficulty without cancellation fee >	Driver di	DOST		Brought to wrong destination	Cancellation policy
Lost Items	>	Pickup and drop-off issues	>	Trip automatically cancelled	Driver to	External Sources	>	Cancellation Fee >	Couldn't find or get to driver
IRT: Accidents	>	Promotions	>	uberPOOL no show fee >	Driver w	Fare review	>	Had to walk to pickup or destination	Driver arrived too early
IRT: Incidents	>	Receipt	>	Scheduled rides	Phone ba	Feedback about driver	>	No cars available >	Driver cancelled
Service Denial	>	uberPOOL on trip issues	>	None of the above works	Refused	Feedback about vehicle	>	Pickup difficulty without cancellation fee >	Driver didn't answer phone
Tech issues	>	DOST			Road iss	Invoice	>	Scheduled rides	Driver took too long
Trips	>	External Sources	>		Set Wror	Lost items general info		Trip automatically cancelled	Driver went to a totally different place

8	Т	est	

COTA v1 vs. COTA v2 A/B Test

COTA v2 is **20-30% more accurate** than COTA v1 in online A/B tests

COTA v1 reduces handling time of ~8%, while COTA v2 provides an additional ~7% reduction, more than ~15% overall reduction

Statistically significant customer satisfaction improvement

Threshold on Type Model Confidence

Threshold on Both Models' Confidence

Coverage vs. Maximum Accuracy

Conclusions

Using NLP & ML COTA makes customer care experience faster and more accurate while saving Uber millions of \$

Moving from traditional to deep learning models, we observe a substantial performance boost (up to **30%**)

Using intelligent suggestions we were able to **reduce ticket** handling time without impacting customer satisfaction

Model degradation

Distribution shift in the real world

- Bugs get solved, probability of a issue type can decrease
- New products can be added (UberPool) so new issue types appear

Older data becomes noise

• We often talk about distribution shift in the test set, but the test set of a month ago is the training set now

Retraining Strategy

Dealing with distribution shift is an **open research topic**

In practice in most cases the safest route is just retraining the model

But...

- How often to retrain?
- What triggers retraining?
- With how much data?

Test

Offline simulation

| Train Trai | n Test | Test | Test | Test |
|-------|-------|-------|-------|-------|-------|------------|--------|------|------|------|
| Train Trai | n Test | Test | Test | Test |
| Train Trai | n Test | Test | Test | Test |
| Train Trai | n Test | Test | Test | Test |

Offline simulation

Train	Test	Те							
Train	Test	Те							
Train	Test	Τε							
Train	Test	Те							
							_		_
Train	Test	Τε							
Train Train	Test Test	Te Te							
Train Train Train	Test Test	Te Te							

Offline simulation

Retraining Strategy

How often to retrain?

With how much data?

Online Retraining

What triggers retraining?

Used learnings from offline simulation

Retrained **when performance dropped** below performance on the test set at training original training time - 8% (relative)

Retrained with **1.5 months** of training data, as we learned from the offline simulation that more was detrimental to performance

COTA Team Cross-functional collaboration

Al Labs **Applied Machine Learning Customer Obsession** Michelangelo **Sensing and Perception**

TECH DAY 2018

Enhancing Recommendations on Uber Eats with Graph Convolutional Networks

Ankit Jain/Piero Molino ankit.jain/piero@uber.com

Uber Al

Agenda

- 1. Graph Representation Learning
- 2. Dish Recommendation on Uber Eats
- **Graph Learning on Uber Eats** 3.

Graph Representation

Graph data

Social networks

Information networks

Linked Open Data

Biomedical networks

Networks of neurons

Internet

Tasks on graphs

Node classification

Predict a type of a given node

Link prediction

Predict whether two nodes are linked

Community detection

Identify densely linked clusters of nodes

Network similarity

How similar are two (sub)networks

Learning framework

Define an encoder mapping from nodes to embeddings

Define a node similarity function based on the network structure

Optimize the parameters of the encoder so that:

 $similarity(u,v) pprox z_v^+ z_u$

embedding space

original graph

Shallow encoding

Simplest encoding approach: encoder is just an embedding-lookup

- Algorithms like Matrix Factorization, Node2Vec, Deepwalk fall in this category

Shallow encoding limitations

O(|V|) parameters are needed, every node has its own embedding vector

Either not possible or very time consuming to generate embeddings for nodes **not** seen during training

Does not incorporate **node features**

Graph Neural Network

Key Idea: To obtain node representations, use a neural network to aggregate information from neighbors recursively by limited Breadth-FIrst Search (BFS)

INPUT GRAPH

Inductive capability

In many real applications new nodes are often added to the graph

Need to generate embeddings for new nodes without retraining

Hard to do with shallow methods

train with snapshot

new node arrives

generate embedding for new node

Dish Recommendation on Uber Eats

Suggested Dishes

Recommended Dishes Carousel

Picked for You

Graph Learning in Uber Eats

Bipartite graph for dish recommendation

Users connected to dishes they have ordered in the last M days

Weights are frequency of orders

Graph properties

Graph is dynamic: new users and dishes are added every day

Each node has features, e.g. word2vec of dish names

Max Margin Loss

For dish recommendation we care about **ranking**, not actual similarity score

Max Margin Loss:

New loss with Low Rank Positives Negative **Positive Low Rank Positive D1** 5 **U1 U1 U1 D1 D4 D3 U1** 2 **D2** 1 $lpha_n \max(0, -z_u z_v + z_u z_n + \Delta_n) +$ $L = \sum$ **D3** 2 $(u,v) \in E$ **U2** 3 $\alpha_l \max(0, -z_u z_v + z_u z_l + \Delta_l)$ **D4**

Weighted pool aggregation

Aggregate neighborhood embeddings based on edge weight

$\mathbf{AGG} = \sum_{u \in N(v)} w(u, v) Q h_u^{k-1}$

Offline evaluation

Trained the downstream Personalized Ranking Model using graph node embeddings

~12% improvement in test AUC over previous production model

Model

Test AUC

Previous production model

0.784

With graph embeddings

0.877

Feature Importance

Feature

Importance

Graph learning cosine similarity is the top feature in the model

Online evaluation

Ran a A/B test of the Recommended Dishes Carousel in San Francisco

Significant uplift in Click-Through Rate with respect to the previous production model

Conclusion: Dish Recommendations with graph learning features are live in San Francisco, soon everywhere else

More Resources

Uber Eng Blog Post

Learn better representation in data scarcity regimes like small/new cities through meta-learning [<u>NeurIPS Graph Representation</u> <u>Learning Workshop 2019</u>]

Learnings

In complex data pipelines, the model isn't always the bottleneck

 Graph processing was more expensive than model inference because of sheer size

Even when the model (or the data proc + model) is the bottleneck you can often precompute and cache

 Precomputed a big LRU cache of user-to-dish/ restaurant similarities. It was recomputed entirely only when the model was updated and refreshed after user ordered

Q: Despite big offline gains, only got small improvement in Click through rate and orders (still statistically significant and worth millions of dollars), why?

A:

Q: Despite big offline gains, only got small improvement in Click through rate and orders (still statistically significant and worth millions of dollars), why?

A: Our recommendations where a small part of the UI, "favourite restaurants" and "Daily Deals" came always first in the UI and gathered most of clicks and orders. Bewre how you choose the denominator of your metrics!

Q: Why is it hard to show big online gains in recommender systems in general?

A:

Q: Why is it hard to show big online gains in recommender systems in general?

A: If there's a model in production your are comparing against, you are likely using biased data for both training and prediction!

Learnings: data bias

The world changes (new restaurants and dishes) -> ML lifecycle is a loop

The user behavior changes (now that my favorite pizza place is on the app, I start always ordering from there)

Model deployment changes user behavior (the items the model suggest influence your behavior)

Biased training data and biased evaluation data
Q: How to collect unbiased data?

A:

Q: How to collect unbiased data?

A: Complicated, one option is to show random recommendations to x% of users

Q: What is the cost of collecting unbiased data?

A:

Q: What is the cost of collecting unbiased data?

A: The likelyhod of those users actually selecting those items is very low -> small positive data is collected, those users may not buy anything -> the company looses money!

Q: What could be compromise solutions?

A:

Q: What could be compromise solutions?

A: Show to users random predictions from within the top 100 predicted by the model. Data is still biased, but more likely to collect unexpected positive datapoints.

Team

Ankit Jain Isaac Liu Piero Molino Long Tao Jan Pedersen Nathan Berreb Ramit Hora Alex Danilychev

	Ankur Sarda
	Jimin Jia
obi	Santosh Golecha

Restaurant preparation time

The data generation process

Restaurant preparation time

The data generation process

Predict **restaurant preparation time** is useful, I can decide when to dispatch the driver to reduce wait! (If I can also predict when the driver will arrive)

- How do you know when a restaurant is done preparing?
- The driver can arrive early, in which case the preparation time is from initial order to order pickup
- If the driver arrives late, and the dish is already prepared, the order pickup time is a upper bound

Restaurant preparation time modeling

We tried trainign a model anyway using order pickup

Huge variance in the training data -> Huge variance in predictions!

Our model was **5min more acurate** than previous one, but with stddev +-10min!

Restaurant preparation time variance

Drilled into the data to **understand** the source of variance

Same restaurant, same day, same order, few minutes after -> **20min** prep time vs **2min** prep time

Why?

Restaurant preparation time new feature

Restaurants batch orders!

Theory: They prepare a big amount of soup when first ordered, the next soup order will take much less because they are already prepared

Added a feature in the model:

were items in the order ordered in the last x minutes?

Improved predictions by **2min**, reduced stddev by **1/3** (still a lot)

Restaurant preparation time moral

Went back to data collection, asked restaurants to notify us when the order was ready

Still noisy data (restaurants have no incentive to be precise, or they forget entirely), but better estimate

Moral: ML lifecycle is a loop and you can go back to the data collection process even after deployment, and iterate the process multiple times

What am I working on now

@Stanford with Chris Ré

Ludwig: declarative multimodal deep learning pipeline toolbox (no code needed, extensible, AutoML capabilities)

For a talk about Ludwig you can check my website http://w4nderlu.st or the last Stanford MLSys Seminar Series episode http:// <u>mlsys.stanford.edu</u>

Founded a company to make ML accessible to less technical people: AutoML + end-to-end platform built on Ludwig + secret spicy sauce!