
Real-world ML use cases

Agenda

• NLP models for Customer Support

• Model retraining strategies

• Gran Neural Networks for dish/restaurant recommendation

• Learning from recommender system deployment

• Lessons learned from real-world data collection

Piero Molino

Improving Uber Customer
Support with Natural Language
Processing and Deep Learning

 Piero Molino | AI Labs
Huaixiu Zheng | Applied Machine Learning
 Yi-Chia Wang | Applied Machine Learning

Customer Obsession Ticket Assistant

COTA v1: classical NLP + ML models

○ Faster and more accurate customer care experience
○ Million $ of saving while retaining customer satisfaction

COTA v2: deep learning models

○ Experiments with various deep learning architectures
○ 20-30% performance boost compared to classical models

Main Takeaways

COTA Blog Post and followup, KDD paper

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Agenda

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Agenda

What is the challenge?
As Uber grows, so does our volume of support tickets

Millions of tickets from
riders / drivers / eaters
per week

Thousands of different
types of issues users
may encounter

User

CSRContact
Ticket

Response

Select Flow Node

Write Message Select
Contact Type

Lookup info &
Policies

Select ActionWrite response using
a Reply Template

Uber Support Platform

What is the challenge?
And it is not easy to solve a ticket

1000+ types
in a hierarchy
depth: 3~6

10+ actions (adjust fare, add appeasement, …)

1000+ reply templates

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Agenda

SUGGESTED CONTACT TYPES

Driver > Account > Unable to sign in or go online > Account inactive

Driver > Account > Profile > Unsubscribe > SMS or Text

Driver > Account > Vehicles > Edit vehicle class

Reorder actions in relevance

Surface top-3 most-relevant reply templates

COTA v1: Suggested Resolution
Machine learning models recommending the 3 most relevant solutions

Multiclass
classification

Pointwise
ranking

E.g., User type

E.g., ETA, city

E.g., Ticket
creation time,
product type

COTA v1 Model Pipeline

Information
about the
contact type or
reply, obtained
from all tickets
belonging to it

cosine similarity

To
pi

c
#i

Topic #j

Ticket
CT1

CT2

Multi-class Classification Pointwise Ranking

Tickets
Features

Label (CT1, CT2)

t1 features CT1

t2 features CT2

Tickets Features Type Features Sim (t, CT) Label (0, 1)

t1 features CT1 features 0.8 1

t1 features CT2 features 0.1 0

t2 features CT1 features 0.2 0

t2 features CT2 features 0.7 1

Ranking allows us to include features of candidate
types and similarity features between a ticket and a
candidate type

Model: Random Forest with hyperparameters
optimized through grid search

From Classification to Ranking

6% absolute (10% relative) improvement

Hits@3: any of the top 3 suggestions is selected by CSRs

Performance Comparison

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Agenda

Input Encoders Combiner Output Decoders

Generic architecture, reusable in many different applications.
We are considering open-sourcing it!

Text
features

Categorical
features

Numerical
features

Encoder Decoder

Categorical
features

Text
features

Decoder

Binary
features

Encoder

Encoder

Encoder
Combiner

Numerical
featuresDecoder

Set
features Encoder

Sequential
features Encoder

Binary
featuresDecoder

Set
featuresDecoder

Sequential
featuresDecoder

COTA v2: Deep Learning Architecture

Key contributors
Travis Addair
Yaroslav Dudin
Sai Sumanth Miryala
Jim Thompson
Avanika Narayan
Ivaylo Stefanov
John Wahba
Doug Blank
Patrick von Platen
Carlo Grisetti
Chris Van Pelt
Boris Dayma

Documentation
http://ludwig.ai

Repository
http://github.com/uber/ludwig

Blogpost
http://eng.uber.com/introducing-ludwig
http://eng.uber.com/ludwig-v0-2/
http://eng.uber.com/ludwig-v0-3/

White paper
https://arxiv.org/abs/1909.07930

http://ludwig.ai
http://github.com/uber/ludwig
http://eng.uber.com/introducing-ludwig
http://eng.uber.com/ludwig-v0-3/
https://arxiv.org/abs/1909.07930

COTA v2: Text Encoding Models

Char / Word CNN RNNChar CNN Char / Word RNNWord CNN

Char Seq

6 x
1D Conv

2 x FC

Vector

Word Seq

2 x FC

Vector

1D Conv
width 5

1D Conv
width 4

1D Conv
width 3

1D Conv
width 2

Char /
Word Seq

2 x
RNN

2 x FC

Vector

Char /
Word Seq

2 x RNN

2 x FC

Vector

3 x Conv

Which text encoder?
Hyperparameter search for contact type classification

Model Validation accuracy
Training time per
epoch in minutes

CharCNNRNN opt 0.4805 35

WordCNN opt 0.4733 4

WordRNN opt 0.4713 17

WordCNNRNN opt 0.4615 12

CharCNN opt 0.4598 5

WordCNN is the best compromise between performance and speed

20%+ over Random Forest used in COTA v1 and ~10x faster than CharCNNRNN

Sequence Model for Type Selection
Predict the sequence of nodes instead of leaf node

Use a Recurrent Decoder to predict sequences of nodes in the contact type tree

Pick the last class before <eos> as prediction

Model makes more reasonable mistakes

CT0

CT1

CT2

CT3

CT4

CT5

CT6

CT7

CT8

CT9

Combiner
Output RNN RNN RNN RNN

CT0 CT3 CT4 CT8

EOSCT3 CT4 CT8

Example: Driver > Trips > Pickup and drop-off issues > Cancellation Fee > Driver Cancelled

Text features
e.g. message

Categorical features
e.g. flow node

Numerical features
e.g. trip fare

Final Architecture
Multi-task sequential learning

TYPE REPLY

Train
ground-truth

TYPE

REPLY

TYPE REPLY

Test
predicted

Convolution
layers

Embedding
layer

Batch-norm
layer

Binary features
e.g. is completed

FC +
Dropout

layers

Recurrent
Decoder

Softmax
layer

Effect of Adding Dependencies Between Tasks

Adding the dependency from Type
to Reply improves accuracy

It also improves a lot the
coherence between the two
models, increasing combined
accuracy consistently

Combined accuracy computed
requiring both Type and Reply
model to be correct at the same
time

Motivation and Solution

Complexity of Customer support @Uber

COTA v1: Traditional ML / NLP Models

Multi-class Classification vs Ranking

COTA v2: Deep Learning Models

Deep learning architectures

COTA v1 vs COTA v2

Outline

COTA v2 is consistently more
effective than COTA v1 on all
metrics for both models

The combined accuracy in
particular shows an absolute
~+9% (relative +~20%)

COTA v1 vs. COTA v2 offline comparison

COTA v1 vs. COTA v2 A/B Test

COTA v2 is 20-30% more
accurate than COTA v1 in
online A/B tests

COTA v1 reduces handling
time of ~8%, while COTA v2
provides an additional ~7%
reduction, more than ~15%
overall reduction

Statistically significant
customer satisfaction
improvement

COTA v1 vs. COTA v2 A/B Test

Threshold on Type Model Confidence

Threshold on Both Models’ Confidence

95% accuracy → 10% coverage
90% accuracy → 20% coverage

Coverage vs. Maximum Accuracy

Conclusions

Moving from traditional
to deep learning
models, we observe a
substantial
performance boost
(up to 30%)

Using intelligent
suggestions we were
able to reduce ticket
handling time without
impacting customer
satisfaction

Using NLP & ML COTA
makes customer care
experience faster and
more accurate while
saving Uber millions
of $

Model degradation

Distribution shift in the real world

• Bugs get solved, probability of a issue type can
decrease

• New products can be added (UberPool) so new
issue types appear

Older data becomes noise

• We often talk about distribution shift in the test set,
but the test set of a month ago is the training set now

Retraining Strategy

Dealing with distribution shift is an open research topic

In practice in most cases the safest route is just
retraining the model

But...

• How often to retrain?

• What triggers retraining?

• With how much data?

Offline simulation: time-based split

Time
Jan Feb Mar Apr

Dataset

Training

Test

Offline simulation: split in weeks

Time
Jan Feb Mar Apr

Dataset

Train

Test Test Test Test

TrainTrainTrainTrainTrainTrainTrain

Offline simulation

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Offline simulation
Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

Train Test Test Test TestTrainTrainTrainTrainTrainTrainTrain

...

Offline simulation

Time
Jan Feb Mar Apr

Dataset

TrainTrainTrainTrainTrainTrainTrainTrain Test Test Test Test

TrainTrainTrainTrainTrainTrainTrainTrain Test Test Test Test

TrainTrainTrainTrainTrainTrainTrainTrain Test Test Test Test

TrainTrainTrainTrainTrainTrainTrainTrain Test Test Test Test

TrainTrainTrainTrainTrainTrainTrainTrain Test Test Test Test

Retraining Strategy

How often to retrain? With how much data?

0

0,225

0,45

0,675

0,9

week+1 week+2 week+3 week+4
0

0,225

0,45

0,675

0,9

week-8 week-6 week-4 week-2

Online Retraining

What triggers retraining?

Used learnings from offline simulation

Retrained when performance dropped below
performance on the test set at training original
training time - 8% (relative)

Retrained with 1.5 months of training data, as we
learned from the offline simulation that more was
detrimental to performance

COTA Team
Cross-functional collaboration

AI Labs
Applied Machine Learning
Customer Obsession
Michelangelo
Sensing and Perception

Enhancing Recommendations on
Uber Eats with Graph Convolutional
Networks
Ankit Jain/Piero Molino

ankit.jain/piero@uber.com

Agenda
1. Graph Representation Learning

2. Dish Recommendation on Uber Eats

3. Graph Learning on Uber Eats

Graph
Representation
Learning

Linked Open Data

Graph data

Social networks Biomedical networks

Information networks Internet Networks of neurons

Tasks on graphs

Node classification
Predict a type of a given node

Link prediction
Predict whether two nodes are linked

Community detection
Identify densely linked clusters of nodes

Network similarity
How similar are two (sub)networks

Define an encoder mapping from
nodes to embeddings

Define a node similarity function based
on the network structure

Optimize the parameters of the
encoder so that:

Learning framework

embedding spaceoriginal graph

Simplest encoding approach: encoder is just an embedding-lookup

Algorithms like Matrix Factorization, Node2Vec, Deepwalk fall in this category

Embedding
size

One column per node

embedding
matrix

embedding vector for a specific node

Shallow encoding

Shallow encoding limitations

O(|V|) parameters are needed, every node
has its own embedding vector

Either not possible or very time consuming
to generate embeddings for nodes not
seen during training

Does not incorporate node features

Graph Neural Network
Key Idea: To obtain node representations, use a neural network to aggregate
information from neighbors recursively by limited Breadth-FIrst Search (BFS)

INPUT GRAPH

A

A

C NN

NN

A

F

E

B

A

NN

B

D

C NN

DEPTH 2 BFS

A

B

D

E

F

C

train with snapshot new node arrives generate embedding
for new node

Inductive capability

In many real applications new nodes are often added to the graph

Need to generate embeddings for new nodes without retraining

Hard to do with shallow methods

Dish Recommendation
on Uber Eats

Suggested
Dishes

Recommended Dishes
Carousel Picked for You

Graph Learning in
Uber Eats

Users connected to dishes they have
ordered in the last M days

Weights are frequency of orders

Graph properties

Graph is dynamic: new users
and dishes are added every day

Each node has features, e.g.
word2vec of dish names

3

1

4

Bipartite graph for dish recommendation

U1

U2

D1

D2

positive
pair

negative
sample

margin

For dish recommendation we care about ranking, not actual similarity score

Max Margin Loss:

Max Margin Loss

New loss with Low Rank Positives

U1

U2

D2

D4

D1

D3

5

2

2

1

3

U1 D1

Positive Negative Low Rank Positive

U1 D4 U1 D3

Weighted pool aggregation

Aggregate neighborhood embeddings based on edge weight

hD hB

hA

hC

5

2

1

Q

Q

Q

denotes a fully connected layer

Model Test AUC

Previous
production model 0.784

With graph
embeddings 0.877

Offline evaluation

Trained the downstream Personalized
Ranking Model using graph node
embeddings

~12% improvement in test AUC over
previous production model

Feature Importance

Graph learning cosine similarity is
the top feature in the model

Online evaluation

Ran a A/B test of the Recommended Dishes Carousel
in San Francisco

Significant uplift in Click-Through Rate with respect to
the previous production model

Conclusion: Dish Recommendations with graph
learning features are live in San Francisco, soon
everywhere else

ServingTraining Pipeline Step 2Training Pipeline Step 1

Data Pipeline Step 1

Table 1Table 1Source
Tables

Versioned nodes
and edges

Daily Ingestion

Data Pipeline Step 2

da
te

...da
te

 -
k

Collapsed graph
with latest nodes

and edges

Date

Data Pipeline Step 3

Partitioned city
graph using

Cypher

Data Pipeline Step 4

NetworkX graph
for model training

& embedding
generation

Back-dated graph
for offline analysis

Past Date

GNN Model
Training

Personalized
Ranker Model

Training

Node
Embeddings

Ranker
Model

Personalized
Ranker Online

Recommendation

More Resources

Uber Eng Blog Post

Learn better representation in data scarcity
regimes like small/new cities through
meta-learning [NeurIPS Graph Representation
Learning Workshop 2019]

Learnings

In complex data pipelines, the model isn't always the
bottleneck

• Graph processing was more expensive than model
inference because of sheer size

Even when the model (or the data proc + model) is the
bottleneck you can often precompute and cache

• Precomputed a big LRU cache of user-to-dish/
restaurant similarities. It was recomputed entirely only
when the model was updated and refreshed after user
ordered

Learnings: online evaluation issues

Q: Despite big offline gains, only got small
improvement in Click through rate and orders (still
statistically significant and worth millions of dollars),
why?

A: Our recommendations where a small part of the UI,
"favourite restaurants" and "Daily Deals" came always
first in the UI and gathered most of clicks and orders.
Bewre how you choose the denominator of your
metrics!

Learnings: online evaluation issues

Q: Despite big offline gains, only got small
improvement in Click through rate and orders (still
statistically significant and worth millions of dollars),
why?

A: Our recommendations where a small part of the UI,
"favourite restaurants" and "Daily Deals" came always
first in the UI and gathered most of clicks and orders.
Bewre how you choose the denominator of your
metrics!

Learnings: online evaluation issues

Q: Why is it hard to show big online gains in
recommender systems in general?

A: If there's a model in production your are comparing
against, you are likely using biased data for both
training and prediction!

Learnings: online evaluation issues

Q: Why is it hard to show big online gains in
recommender systems in general?

A: If there's a model in production your are comparing
against, you are likely using biased data for both
training and prediction!

Learnings: data bias

The world changes (new restaurants and dishes) ->
ML lifecycle is a loop

The user behavior changes (now that my favorite
pizza place is on the app, I start always ordering
from there)

Model deployment changes user behavior (the
items the model suggest influence your behavior)

Biased training data and biased evaluation data

Learnings: data bias

Q: How to collect unbiased data?

A: Complicated, one option is to show random
recommendations to x% of users

Learnings: data bias

Q: How to collect unbiased data?

A: Complicated, one option is to show random
recommendations to x% of users

Learnings: data bias

Q: What is the cost of collecting unbiased data?

A: The likelyhod of those users actually selecting those
items is very low -> small positive data is collected,
those users may not buy anything -> the company
looses money!

Learnings: data bias

Q: What is the cost of collecting unbiased data?

A: The likelyhod of those users actually selecting those
items is very low -> small positive data is collected,
those users may not buy anything -> the company
looses money!

Learnings: data bias

Q: What could be compromise solutions?

A: Show to users random predictions from within the
top 100 predicted by the model. Data is still biased,
but more likely to collect unexpected positive
datapoints.

Learnings: data bias

Q: What could be compromise solutions?

A: Show to users random predictions from within the
top 100 predicted by the model. Data is still biased,
but more likely to collect unexpected positive
datapoints.

Team

Ankit Jain Isaac Liu Ankur Sarda

Piero Molino Long Tao Jimin Jia

Jan Pedersen Nathan Berrebbi Santosh Golecha

Ramit Hora Alex Danilychev

Restaurant preparation time
The data generation process

Time

User orders

Restaurant
prepares

Driver
dispatch

Dirver
arrives

Order
delivered

User

Restaurant

Driver

User

Driver
arrives

Order
pickup

Restaurant preparation time
The data generation process

Predict restaurant preparation time is
useful, I can decide when to dispatch
the driver to reduce wait! (If I can also
predict when the driver will arrive)

• How do you know when a restaurant
is done preparing?

• The driver can arrive early, in which
case the preparation time is from
initial order to order pickup

• If the driver arrives late, and the dish
is already prepared, the order pickup
time is a upper bound

Time

User orders

Restaurant
prepares

Driver
dispatch

Dirver
arrives

Order
delivered

User

Restaurant

Driver

User

Driver
arrives

Order
pickup

Restaurant preparation time modeling

We tried trainign a model anyway using
order pickup

Huge variance in the training data ->
Huge variance in predictions!

Our model was 5min more acurate
than previous one, but with stddev +-
10min!

Mean absolute error
0 2 4 6 8 10 12 14 16 18 20+

XGboost NewModel

Restaurant preparation time variance

Drilled into the data to understand
the source of variance

Same restaurant, same day, same
order, few minutes after -> 20min
prep time vs 2min prep time

Why?

Restaurant Order Day Time Prep Time

POD Thai Pho Soup Tuesday 2nd 19:10 20m

POD Thai Pho Soup Tuesday 2nd 19:15 2m

Restaurant preparation time new feature

Restaurants batch orders!

Theory: They prepare a big amount of
soup when first ordered, the next soup
order will take much less because they
are already prepared

Added a feature in the model:

were items in the order ordered in the
last x minutes?

Improved predictions by 2min, reduced
stddev by 1/3 (still a lot)

Mean absolute error
0 2 4 6 8 10 12 14 16 18 20+

XGboost
NewModel
NewModel + feat

Restaurant preparation time moral

Went back to data collection, asked
restaurants to notify us when the order
was ready

Still noisy data (restaurants have no
incentive to be precise, or they forget
entirely), but better estimate

Moral: ML lifecycle is a loop and you
can go back to the data collection
process even after deployment, and
iterate the process multiple times

What am I working on now

@Stanford with Chris Ré

Ludwig: declarative multimodal deep learning
pipeline toolbox (no code needed, extensible,
AutoML capabilities)

For a talk about Ludwig you can check my
website http://w4nderlu.st or the last Stanford
MLSys Seminar Series episode http://
mlsys.stanford.edu

Founded a company to make ML accessible
to less technical people: AutoML + end-to-end
platform built on Ludwig + secret spicy sauce!

http://w4nderlu.st

