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Agenda

• Dealing with machine learning (ML) pipelines sucks 

• Shift recap & existing methods 

• Toy ML task introduction 

• Monitoring challenges & solution ideas
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Dealing with ML Pipelines Sucks 🤮
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Production ML
An on-call engineer’s biggest nightmare 😱

Figure 1: High-level architecture of a generic end-to-end machine learning pipeline. Logos represent a sample of tools used to construct components of the 
pipeline, illustrating heterogeneity in the tool stack. Shankar et al. 2021
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Production ML
An on-call engineer’s biggest nightmare 😱

• Many problems arise post-deployment 

• Corrupted upstream data 

• Model developer is on leave 

• Training assumptions don’t hold in practice 

• Data “drifts” over time 

• And more…
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Why Observability?

• Can’t catch all bugs before they happen, but we want to minimize downtime 

• We should: 

• Help engineers detect bugs 

• Help engineers diagnose bugs 

• Need to support a wide variety of skill sets 

• Engineers, data scientists, etc.
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Types of ML Data Management Solutions
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Pre-training 

• What do I need to start 
training a model? 

• Feature stores, ETL 
pipelining, etc

Experiment Tracking 

• What’s the best model 
for a pipeline? 

• mlflow, wandb, etc

Observability 

• There’s a bug in my 
pipeline; where is it? 

• Real-time ML 
performance monitoring



Real-Time ML Performance 
Monitoring: Background 📓
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Why is this Hard?
Data “shifts”… 🤔

• Determining real-time performance requires labels 

• …which are not always available post-deployment 

• Is performance drop temporary (e.g., seasonal) or forever? 

• Degenerate feedback loops 

• I.e., when predictions influence feedback (which labels are extracted from)

9



Shift Recap
Notation 🎶

• X is feature (covariate) space, Y is label space 

• P(X): distribution of features 

• P(Y): distribution of labels 

• P(X | Y): distribution of features given specific labels 

• P(Y | X): distribution of labels given specific features 

• This is what ML models are trying to learn!
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Shift Recap
Terminology 🧑🏫

• Covariate shift 

• P(Y | X) is the same but P(X) changes 

• Label shift 

• P(Y) changes but P(X | Y) is the same 

• Concept shift 

• P(Y | X) changes but P(X) is the same
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Existing Methods for Tackling Shift
Levels of sophistication 👸

• Straw-man approach 🥤 

• Tracking means & quantiles of features and outputs 

• “I took a stats class” approach 🧑🎓 

• Tracking MMD, KS & Chi-Square test statistics, etc 

• alibi-detect 

• Both approaches are label-unaware and don’t use all the information we 
have. Can we do better?
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https://github.com/SeldonIO/alibi-detect


Toy ML Task: Running Example 🪀
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Task familiarization 🚕

• Binary classification task: predict whether a passenger in a NYC taxi ride will give 
the driver a “reasonable” tip (>10% of fare) 

• Using subsampled data from NYC Taxi & Limousine Commission public dataset 

• Using pd.DataFrame and sklearn Random Forest Classifier 

• Evaluating accuracy
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https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page


Pipeline familiarization 👷
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Shift Recap
Examples 🧑🏫

• X = features (e.g., location), Y = labels (high tip indicator)  

• Covariate shift 

• More taxi rides in Midtown area around NYE 🎆 

• Label shift 

• Stimulus check causes people to tip more 💸 

• Concept shift 

• Heavy construction in certain areas causes people to tip less 🚧
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Real-Time ML Performance 
Monitoring: Challenges 👷
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Challenge Tree 🌳

• “Coarse-grained” monitoring: detecting performance issues with label delays 

• Full-feedback, no-feedback, and partial-feedback cases 

• “Fine-grained” monitoring: diagnosing performance issues 

• Teasing out engineering issues from data shift
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Accuracy: ?? 🤔
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Accuracy: 75% ?? 🤔
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Accuracy: 86% 😀
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Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• # predictions made = # labels received 

• Simplest case 

• 1) Do streaming join on predictions & feedback 

• 2) Compute accuracy on result 

• What if…data is too large to fit in memory?
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Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• What if…data is too large to fit in memory? 

• Approximate streaming joins 

• Uniformly subsampling streams before joins yields quadratically fewer resulting 
tuples 

• Idea: stratified subsampling 

• How to construct strata?
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Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• Problem: randomly subsampling predictions and labels before the join yields 
quadratically fewer samples to compute accuracy on  

• Solution: stratified sampling 

• How to construct strata/subgroups? 

• Want: most accurate overall approximate accuracy 

• Need: subgroups with similar prediction errors/losses
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Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• Occurs immediately after deployment 

• Problem: no labels 

• Solution: importance-weight training subgroup accuracy 

• Split train set into subgroups with similar prediction errors 

• Create criteria for subgroups 

• Determine training accuracy for each subgroup
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Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• At inference, classify data point (feature vector) into subgroup 

• Importance-weight subgroup training accuracies by inference representation 

• Example 

• Subgroups FiDi and Midtown have accuracies of 80% and 50% 

• After deployment, we see 100 FiDi rides and 500 Midtown rides 

• Estimated accuracy =  = 55%0.8 × 100 + 0.5 × 500 =
80 + 250

500
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Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• Solution: importance-weight training subgroup accuracy 

• How to construct subgroups? 

• Want: most accurate overall approximate accuracy 

• Need: subgroups with similar prediction errors/losses
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Coarse-grained Monitoring 🔎
Detecting performance issues: partial-feedback 📬

• Hybrid of full-feedback & no-feedback? 

• Some data points have longer feedback delays than others 

• Delays aren’t necessarily uniformly distributed 

• Why? 

• Additional problem: identify groups of data points with similar feedback delays
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Coarse-grained Monitoring 🔎
All feedback schemes boil down to the same research question…

• How to create dynamically evolving subgroups with similar prediction 
errors/losses? 

• Solution ideas 

• Train decision tree to predict loss & use leaves as clusters 

• Frequent item-set or predicate search in loss “clusters” 

• Lots of hyperparameters to decide 😔 

• Need to constantly retrain subgroup models?
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Fine-grained Monitoring 🔎
Diagnosing performance issues: data quality issues 🔧

• Instrument pipelines with data quality checks 

• Alert on missing data 

• Set upper and lower bounds for feature values 

• Set constraints for column statistics (e.g., expected mean, median) 

• Tedious to scale to 1000s of features 🙀 

• Practitioners push DQ verification onto “shift” detection…
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Fine-grained Monitoring 🔎
Diagnosing performance issues: towards retraining models 🔁

• Using existing methods to compute shift doesn’t work in practice 

• E.g., KS test has low p-values for O(1000) data points 

• Alert fatigue when monitoring every feature and output column 

• Seasonal & expected shifts 

• Idea: look into these statistics when coarse-grained approximated metrics 
are low
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Fine-grained Monitoring 🔎
Diagnosing performance issues: towards retraining models 🔁

• Different shifts imply different retraining strategies, e.g., 

• Covariate shift: augment some subgroups in training 

• Concept shift: retrain on recent window 

• Research question: how to create self-tuning training sets?
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mltrace: Ongoing Work ⚙
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Ongoing Research Projects 🔬

• mltrace: lightweight, “bolt-on” ML observability tool in the making with projects in 
several research areas
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Data Systems Machine Learning HCI

• Mitigating effects of feedback 
delays on real-time ML 
performance 

• Differential dataflow to compute 
streaming ML metrics quickly 
and efficiently at scale

• Creating streaming ML 
benchmarks 

• Building repository of tasks with 
“temporally evolving tabular 
data” (e.g. Ethereum gas price 
prediction)

• Interview study on best practices 
in CI / CD for ML 

• Visualizing large-scale data drift

https://github.com/loglabs/mltrace
https://www.shreya-shankar.com/rethinking-ml-monitoring-4/#scalable-monitoring-infrastructure
https://twitter.com/TweetAtAKK/status/1486026387525804034?s=20


Readings and Resources 📕

• Towards Observability for Machine Learning Pipelines 

• The Modern ML Monitoring Mess 

• Rethinking Streaming ML Evaluation 

• Categorizing Post-Deployment ML Issues 

• Failure Modes in Existing Observability Tools 

• Research Challenges 

• Contact: shreyashankar@berkeley.edu 📧
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https://arxiv.org/abs/2108.13557
https://www.shreya-shankar.com/rethinking-ml-monitoring-1/
https://www.shreya-shankar.com/rethinking-ml-monitoring-2/
https://www.shreya-shankar.com/rethinking-ml-monitoring-3/
https://www.shreya-shankar.com/rethinking-ml-monitoring-4/
mailto:shreyashankar@berkeley.edu

