
Shreya Shankar, UC Berkeley 🐻

February 2022

Towards Observability for
Machine Learning Pipelines
Monitoring Streaming ML with Feedback Delays

1

Agenda

• Dealing with machine learning (ML) pipelines sucks

• Shift recap & existing methods

• Toy ML task introduction

• Monitoring challenges & solution ideas

2

Dealing with ML Pipelines Sucks 🤮

3

Production ML
An on-call engineer’s biggest nightmare 😱

Figure 1: High-level architecture of a generic end-to-end machine learning pipeline. Logos represent a sample of tools used to construct components of the
pipeline, illustrating heterogeneity in the tool stack. Shankar et al. 2021

4

Production ML
An on-call engineer’s biggest nightmare 😱

• Many problems arise post-deployment

• Corrupted upstream data

• Model developer is on leave

• Training assumptions don’t hold in practice

• Data “drifts” over time

• And more…

5

Why Observability?

• Can’t catch all bugs before they happen, but we want to minimize downtime

• We should:

• Help engineers detect bugs

• Help engineers diagnose bugs

• Need to support a wide variety of skill sets

• Engineers, data scientists, etc.

6

Types of ML Data Management Solutions

7

Pre-training

• What do I need to start
training a model?

• Feature stores, ETL
pipelining, etc

Experiment Tracking

• What’s the best model
for a pipeline?

• mlflow, wandb, etc

Observability

• There’s a bug in my
pipeline; where is it?

• Real-time ML
performance monitoring

Real-Time ML Performance
Monitoring: Background 📓

8

Why is this Hard?
Data “shifts”… 🤔

• Determining real-time performance requires labels

• …which are not always available post-deployment

• Is performance drop temporary (e.g., seasonal) or forever?

• Degenerate feedback loops

• I.e., when predictions influence feedback (which labels are extracted from)

9

Shift Recap
Notation 🎶

• X is feature (covariate) space, Y is label space

• P(X): distribution of features

• P(Y): distribution of labels

• P(X | Y): distribution of features given specific labels

• P(Y | X): distribution of labels given specific features

• This is what ML models are trying to learn!

10

Shift Recap
Terminology 🧑🏫

• Covariate shift

• P(Y | X) is the same but P(X) changes

• Label shift

• P(Y) changes but P(X | Y) is the same

• Concept shift

• P(Y | X) changes but P(X) is the same

11

Existing Methods for Tackling Shift
Levels of sophistication 👸

• Straw-man approach 🥤

• Tracking means & quantiles of features and outputs

• “I took a stats class” approach 🧑🎓

• Tracking MMD, KS & Chi-Square test statistics, etc

• alibi-detect

• Both approaches are label-unaware and don’t use all the information we
have. Can we do better?

12

https://github.com/SeldonIO/alibi-detect

Toy ML Task: Running Example 🪀

13

Task familiarization 🚕

• Binary classification task: predict whether a passenger in a NYC taxi ride will give
the driver a “reasonable” tip (>10% of fare)

• Using subsampled data from NYC Taxi & Limousine Commission public dataset

• Using pd.DataFrame and sklearn Random Forest Classifier

• Evaluating accuracy

14

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Pipeline familiarization 👷

15

Shift Recap
Examples 🧑🏫

• X = features (e.g., location), Y = labels (high tip indicator)

• Covariate shift

• More taxi rides in Midtown area around NYE 🎆

• Label shift

• Stimulus check causes people to tip more 💸

• Concept shift

• Heavy construction in certain areas causes people to tip less 🚧

16

Real-Time ML Performance
Monitoring: Challenges 👷

17

Challenge Tree 🌳

• “Coarse-grained” monitoring: detecting performance issues with label delays

• Full-feedback, no-feedback, and partial-feedback cases

• “Fine-grained” monitoring: diagnosing performance issues

• Teasing out engineering issues from data shift

18

Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays

19

A B C D E F A C F E G B D G

t = 1 t → ∞
No-

feedback
Partial-

feedback

Full-

feedback

Key:

• Prediction stream

• Label stream

 Correct

 Incorrect

✓
×

✓ ✓ ✓ × ✓ ✓✓ ✓

Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays

20

Accuracy: ?? 🤔

A B C D E F A C F E G B D G

t = 1 t → ∞
No-

feedback
Partial-

feedback

Full-

feedback

Key:

• Prediction stream

• Label stream

 Correct

 Incorrect

✓
×

✓ ✓ ✓ × ✓ ✓✓ ✓

Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays

21

Accuracy: 75% ?? 🤔

A B C D E F A C F E G B D G

t = 1 t → ∞
No-

feedback
Partial-

feedback

Full-

feedback

Key:

• Prediction stream

• Label stream

 Correct

 Incorrect

✓
×

✓ ✓ ✓ × ✓ ✓✓ ✓

Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays

22

Accuracy: 86% 😀

A B C D E F A C F E G B D G

t = 1 t → ∞
No-

feedback
Partial-

feedback

Full-

feedback

Key:

• Prediction stream

• Label stream

 Correct

 Incorrect

✓
×

✓ ✓ ✓ × ✓ ✓✓ ✓

Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• # predictions made = # labels received

• Simplest case

• 1) Do streaming join on predictions & feedback

• 2) Compute accuracy on result

• What if…data is too large to fit in memory?

23

Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• What if…data is too large to fit in memory?

• Approximate streaming joins

• Uniformly subsampling streams before joins yields quadratically fewer resulting
tuples

• Idea: stratified subsampling

• How to construct strata?

24

Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• Problem: randomly subsampling predictions and labels before the join yields
quadratically fewer samples to compute accuracy on

• Solution: stratified sampling

• How to construct strata/subgroups?

• Want: most accurate overall approximate accuracy

• Need: subgroups with similar prediction errors/losses

25

Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• Occurs immediately after deployment

• Problem: no labels

• Solution: importance-weight training subgroup accuracy

• Split train set into subgroups with similar prediction errors

• Create criteria for subgroups

• Determine training accuracy for each subgroup

26

Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• At inference, classify data point (feature vector) into subgroup

• Importance-weight subgroup training accuracies by inference representation

• Example

• Subgroups FiDi and Midtown have accuracies of 80% and 50%

• After deployment, we see 100 FiDi rides and 500 Midtown rides

• Estimated accuracy = = 55%0.8 × 100 + 0.5 × 500 =
80 + 250

500

27

Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• Solution: importance-weight training subgroup accuracy

• How to construct subgroups?

• Want: most accurate overall approximate accuracy

• Need: subgroups with similar prediction errors/losses

28

Coarse-grained Monitoring 🔎
Detecting performance issues: partial-feedback 📬

• Hybrid of full-feedback & no-feedback?

• Some data points have longer feedback delays than others

• Delays aren’t necessarily uniformly distributed

• Why?

• Additional problem: identify groups of data points with similar feedback delays

29

Coarse-grained Monitoring 🔎
All feedback schemes boil down to the same research question…

• How to create dynamically evolving subgroups with similar prediction
errors/losses?

• Solution ideas

• Train decision tree to predict loss & use leaves as clusters

• Frequent item-set or predicate search in loss “clusters”

• Lots of hyperparameters to decide 😔

• Need to constantly retrain subgroup models?

30

Fine-grained Monitoring 🔎
Diagnosing performance issues: data quality issues 🔧

• Instrument pipelines with data quality checks

• Alert on missing data

• Set upper and lower bounds for feature values

• Set constraints for column statistics (e.g., expected mean, median)

• Tedious to scale to 1000s of features 🙀

• Practitioners push DQ verification onto “shift” detection…

31

Fine-grained Monitoring 🔎
Diagnosing performance issues: towards retraining models 🔁

• Using existing methods to compute shift doesn’t work in practice

• E.g., KS test has low p-values for O(1000) data points

• Alert fatigue when monitoring every feature and output column

• Seasonal & expected shifts

• Idea: look into these statistics when coarse-grained approximated metrics
are low

32

Fine-grained Monitoring 🔎
Diagnosing performance issues: towards retraining models 🔁

• Different shifts imply different retraining strategies, e.g.,

• Covariate shift: augment some subgroups in training

• Concept shift: retrain on recent window

• Research question: how to create self-tuning training sets?

33

mltrace: Ongoing Work ⚙

34

Ongoing Research Projects 🔬

• mltrace: lightweight, “bolt-on” ML observability tool in the making with projects in
several research areas

35

Data Systems Machine Learning HCI

• Mitigating effects of feedback
delays on real-time ML
performance

• Differential dataflow to compute
streaming ML metrics quickly
and efficiently at scale

• Creating streaming ML
benchmarks

• Building repository of tasks with
“temporally evolving tabular
data” (e.g. Ethereum gas price
prediction)

• Interview study on best practices
in CI / CD for ML

• Visualizing large-scale data drift

https://github.com/loglabs/mltrace
https://www.shreya-shankar.com/rethinking-ml-monitoring-4/#scalable-monitoring-infrastructure
https://twitter.com/TweetAtAKK/status/1486026387525804034?s=20

Readings and Resources 📕

• Towards Observability for Machine Learning Pipelines

• The Modern ML Monitoring Mess

• Rethinking Streaming ML Evaluation

• Categorizing Post-Deployment ML Issues

• Failure Modes in Existing Observability Tools

• Research Challenges

• Contact: shreyashankar@berkeley.edu 📧

36

https://arxiv.org/abs/2108.13557
https://www.shreya-shankar.com/rethinking-ml-monitoring-1/
https://www.shreya-shankar.com/rethinking-ml-monitoring-2/
https://www.shreya-shankar.com/rethinking-ml-monitoring-3/
https://www.shreya-shankar.com/rethinking-ml-monitoring-4/
mailto:shreyashankar@berkeley.edu

