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Agenda

• Dealing with machine learning (ML) pipelines sucks


• Shift recap & existing methods


• Toy ML task introduction


• Monitoring challenges & solution ideas
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Dealing with ML Pipelines Sucks 🤮
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Production ML
An on-call engineer’s biggest nightmare 😱

Figure 1: High-level architecture of a generic end-to-end machine learning pipeline. Logos represent a sample of tools used to construct components of the 
pipeline, illustrating heterogeneity in the tool stack. Shankar et al. 2021
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Production ML
An on-call engineer’s biggest nightmare 😱

• Many problems arise post-deployment


• Corrupted upstream data


• Model developer is on leave


• Training assumptions don’t hold in practice


• Data “drifts” over time


• And more…
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Why Observability?

• Can’t catch all bugs before they happen, but we want to minimize downtime


• We should:


• Help engineers detect bugs


• Help engineers diagnose bugs


• Need to support a wide variety of skill sets


• Engineers, data scientists, etc.
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Types of ML Data Management Solutions
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Pre-training


• What do I need to start 
training a model?


• Feature stores, ETL 
pipelining, etc

Experiment Tracking


• What’s the best model 
for a pipeline?


• mlflow, wandb, etc

Observability


• There’s a bug in my 
pipeline; where is it?


• Real-time ML 
performance monitoring



Real-Time ML Performance 
Monitoring: Background 📓
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Why is this Hard?
Data “shifts”… 🤔

• Determining real-time performance requires labels


• …which are not always available post-deployment


• Is performance drop temporary (e.g., seasonal) or forever?


• Degenerate feedback loops


• I.e., when predictions influence feedback (which labels are extracted from)
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Shift Recap
Notation 🎶

• X is feature (covariate) space, Y is label space


• P(X): distribution of features


• P(Y): distribution of labels


• P(X | Y): distribution of features given specific labels


• P(Y | X): distribution of labels given specific features


• This is what ML models are trying to learn!
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Shift Recap
Terminology 🧑🏫

• Covariate shift


• P(Y | X) is the same but P(X) changes


• Label shift


• P(Y) changes but P(X | Y) is the same


• Concept shift


• P(Y | X) changes but P(X) is the same
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Existing Methods for Tackling Shift
Levels of sophistication 👸

• Straw-man approach 🥤


• Tracking means & quantiles of features and outputs


• “I took a stats class” approach 🧑🎓


• Tracking MMD, KS & Chi-Square test statistics, etc


• alibi-detect


• Both approaches are label-unaware and don’t use all the information we 
have. Can we do better?
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https://github.com/SeldonIO/alibi-detect


Toy ML Task: Running Example 🪀
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Task familiarization 🚕

• Binary classification task: predict whether a passenger in a NYC taxi ride will give 
the driver a “reasonable” tip (>10% of fare)


• Using subsampled data from NYC Taxi & Limousine Commission public dataset


• Using pd.DataFrame and sklearn Random Forest Classifier


• Evaluating accuracy
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https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page


Pipeline familiarization 👷
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Shift Recap
Examples 🧑🏫

• X = features (e.g., location), Y = labels (high tip indicator) 


• Covariate shift


• More taxi rides in Midtown area around NYE 🎆


• Label shift


• Stimulus check causes people to tip more 💸


• Concept shift


• Heavy construction in certain areas causes people to tip less 🚧
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Real-Time ML Performance 
Monitoring: Challenges 👷
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Challenge Tree 🌳

• “Coarse-grained” monitoring: detecting performance issues with label delays


• Full-feedback, no-feedback, and partial-feedback cases


• “Fine-grained” monitoring: diagnosing performance issues


• Teasing out engineering issues from data shift
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Accuracy: ?? 🤔
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Accuracy: 75% ?? 🤔
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Coarse-grained Monitoring 🔎
Detecting performance issues: Feedback Delays
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Accuracy: 86% 😀
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Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• # predictions made = # labels received


• Simplest case


• 1) Do streaming join on predictions & feedback


• 2) Compute accuracy on result


• What if…data is too large to fit in memory?
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Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• What if…data is too large to fit in memory?


• Approximate streaming joins


• Uniformly subsampling streams before joins yields quadratically fewer resulting 
tuples


• Idea: stratified subsampling


• How to construct strata?
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Coarse-grained Monitoring 🔎
Detecting performance issues: full-feedback 📫

• Problem: randomly subsampling predictions and labels before the join yields 
quadratically fewer samples to compute accuracy on 


• Solution: stratified sampling


• How to construct strata/subgroups?


• Want: most accurate overall approximate accuracy


• Need: subgroups with similar prediction errors/losses
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Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• Occurs immediately after deployment


• Problem: no labels


• Solution: importance-weight training subgroup accuracy


• Split train set into subgroups with similar prediction errors


• Create criteria for subgroups


• Determine training accuracy for each subgroup
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Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• At inference, classify data point (feature vector) into subgroup


• Importance-weight subgroup training accuracies by inference representation


• Example


• Subgroups FiDi and Midtown have accuracies of 80% and 50%


• After deployment, we see 100 FiDi rides and 500 Midtown rides


• Estimated accuracy =  = 55%0.8 × 100 + 0.5 × 500 =
80 + 250

500
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Coarse-grained Monitoring 🔎
Detecting performance issues: no-feedback 📭

• Solution: importance-weight training subgroup accuracy


• How to construct subgroups?


• Want: most accurate overall approximate accuracy


• Need: subgroups with similar prediction errors/losses
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Coarse-grained Monitoring 🔎
Detecting performance issues: partial-feedback 📬

• Hybrid of full-feedback & no-feedback?


• Some data points have longer feedback delays than others


• Delays aren’t necessarily uniformly distributed


• Why?


• Additional problem: identify groups of data points with similar feedback delays
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Coarse-grained Monitoring 🔎
All feedback schemes boil down to the same research question…

• How to create dynamically evolving subgroups with similar prediction 
errors/losses?


• Solution ideas


• Train decision tree to predict loss & use leaves as clusters


• Frequent item-set or predicate search in loss “clusters”


• Lots of hyperparameters to decide 😔


• Need to constantly retrain subgroup models?
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Fine-grained Monitoring 🔎
Diagnosing performance issues: data quality issues 🔧

• Instrument pipelines with data quality checks


• Alert on missing data


• Set upper and lower bounds for feature values


• Set constraints for column statistics (e.g., expected mean, median)


• Tedious to scale to 1000s of features 🙀


• Practitioners push DQ verification onto “shift” detection…
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Fine-grained Monitoring 🔎
Diagnosing performance issues: towards retraining models 🔁

• Using existing methods to compute shift doesn’t work in practice


• E.g., KS test has low p-values for O(1000) data points


• Alert fatigue when monitoring every feature and output column


• Seasonal & expected shifts


• Idea: look into these statistics when coarse-grained approximated metrics 
are low
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Fine-grained Monitoring 🔎
Diagnosing performance issues: towards retraining models 🔁

• Different shifts imply different retraining strategies, e.g.,


• Covariate shift: augment some subgroups in training


• Concept shift: retrain on recent window


• Research question: how to create self-tuning training sets?
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mltrace: Ongoing Work ⚙
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Ongoing Research Projects 🔬

• mltrace: lightweight, “bolt-on” ML observability tool in the making with projects in 
several research areas
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Data Systems Machine Learning HCI

• Mitigating effects of feedback 
delays on real-time ML 
performance


• Differential dataflow to compute 
streaming ML metrics quickly 
and efficiently at scale

• Creating streaming ML 
benchmarks


• Building repository of tasks with 
“temporally evolving tabular 
data” (e.g. Ethereum gas price 
prediction)

• Interview study on best practices 
in CI / CD for ML


• Visualizing large-scale data drift

https://github.com/loglabs/mltrace
https://www.shreya-shankar.com/rethinking-ml-monitoring-4/#scalable-monitoring-infrastructure
https://twitter.com/TweetAtAKK/status/1486026387525804034?s=20


Readings and Resources 📕

• Towards Observability for Machine Learning Pipelines


• The Modern ML Monitoring Mess


• Rethinking Streaming ML Evaluation


• Categorizing Post-Deployment ML Issues


• Failure Modes in Existing Observability Tools


• Research Challenges


• Contact: shreyashankar@berkeley.edu 📧
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https://arxiv.org/abs/2108.13557
https://www.shreya-shankar.com/rethinking-ml-monitoring-1/
https://www.shreya-shankar.com/rethinking-ml-monitoring-2/
https://www.shreya-shankar.com/rethinking-ml-monitoring-3/
https://www.shreya-shankar.com/rethinking-ml-monitoring-4/
mailto:shreyashankar@berkeley.edu

