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My research agenda to-date has focused on:
- Going beyond test-set accuracy
- Training models that fulfill multiple desired criteria

Model 
Interpretability - 
reliable 
explanations for 
model behavior.

Model Compression - 
compact machine learning 
models  to work in 
resource constrained 
environments.

Model fragility and 
security - deploy secure 
models that protect user 
privacy.

Fairness - imposes 
constraint on 
optimization that 
reflects societal 
norms of what is fair.



Model Deployment Beyond Test Set Accuracy

I’ll mention research collaborations with my colleagues: 
Nyalleng Moorosi, Gregory Clark, Samy Bengio, Emily Denton, Aaron 
Courville, Yann Dauphin, Andrea Frome, Chirag Agarwal, Daniel Souza, 
Dumitru Erhan.

Accuracy without 
“true” learning. Interpretability Tools

The myth of the 
robust, interpretable, 

compact, fair, high 
test-set accuracy 

model. 



Accuracy without 
“true” learning.



The Clever Hans Effect  1891 - 1907

Hans the horse:
- arithmetic functions
- identify colours
- Count the crowd



Myth of Clever Hans persisted 1891 - 1907

Experimental Design -
Can Hans answer a question 
if the human does not know 
the answer?

Hans answered correctly by 
picking up on microscopic 
clues.

High accuracy without “true” 
learning.



Image Classification Object localization Object recognition

Computer vision tasks

Deep Neural Networks have resulted in a huge leap forward in 
top-line performance on image classification tasks.



Performance on ImageNet



Image source: Digital Globe, Wikipedia

Sobel Edge Filter Hog Filter

Before 2012 - Hand engineered encoders were very interpretable 
but had difficulty generalizing well beyond a few narrow tasks.



2012 - Enter convolutional neural networks:
- AlexNet swept the competition on ImageNet using CNNs. Error rate of 
16.4% (runner up  was at 26.2%). 

Huge advantage = CNN's have dominated ever since.



Instead of telling the model what features to extract, the model learns 
what features are important for the task through feedback (minimizing the 
loss through backpropagation). 

We give up full specification of 
the function - “black-box” 

because difficult to specify 
why model made a certain 

prediction.



Delegating learning of the function to the model can (and has) led to 
Clever Hans moments.

High accuracy without “true” 
learning.Berry et al. (paper link)

Hooker et al. 2019 (paper link)

Cow Limousine

https://arxiv.org/pdf/1807.04975.pd
https://arxiv.org/abs/1911.05248


Delegating learning of the function to the model can (and has) led to 
Clever Hans moments.

High accuracy without “true” 
learning.Blog link

Sheep Dog

https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep


When Cleverhans moments happen in sensitive domains, there can 
be a huge cost to human welfare.

High accuracy without “true” 
learning.

Esteva et al.  (link)
Zech et al. 2018 (link)
AlBadaway et al. 2018 (link)

Skin lesions Pneumonia

https://www.nature.com/articles/nature21056.epdf
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683
https://pubmed.ncbi.nlm.nih.gov/29356028/


Top line metrics often hide 

critical  model behavior. 

In deployment settings, 

necessary to go beyond top-1, 

top-5 to ensure desirable model 

behavior.



How does my model perform...

Classification accuracy / precision-recall curve / 
logarithmic loss / area under the curve / mean 
squared error / mean absolute error / 
F1 score / standard deviation / variance / 
confidence intervals / KL divergence / 
false positive rate / false negative rate / 
<insert metric here>

How might my model perform...

on a sample of test data / on cross-slices of test 
data / on an individual data point / if a datapoint 
is perturbed / if model thresholds were different /
if optimized differently / across all values of a 
feature / when compared to a different model / 
on different data points within a neighborhood 
of data points / <insert question here>



Test-set accuracy does not guarantee that the trained 
function fulfills other properties we may care about.

test-set accuracy - 
extract a 
representation for 
the task that is 
generalizable to 
unseen data. 

Compactness

Interpretability

Robustness

Fairness



Compactness

Interpretability

Adversarial Robustness

Fairness

Typical loss functions in machine learning (MSE, Hinge-Loss and CE) 
impose no preference for functions that are compact, 
interpretability, fairness and robust.



Deployment models to fulfill multiple desiderata.

test-set accuracy - extract a representation for the 
task that is generalizable to unseen data. 

          Cheap - fast to evaluate
Compact - minimal memory

Understandable - Model function performance 
meaningful to humans.

Not vulnerable to non-meaningful changes in data 
distribution.

Reflect preferences about how model should behave on 
subsets of protected features.

Model Compression

Interpretability

Adversarial Robustness

Fairness



Training Models to Fulfill Multiple 
Desiderata

Chapter 1: Fairness



Katerina Kamprani

https://www.theuncomfortable.com/


What if discomfort is not uniform, but targeted?

Further reading

https://en.wikipedia.org/wiki/Hostile_architecture


How a model treats underrepresented features 
often coincide with notions of fairness.

Gender shades (link)
Shankar et al. (link)

Algorithmic bias - errors that create unfair outcomes.

http://gendershades.org/
https://arxiv.org/pdf/1711.08536.pdf


Geographic bias in how we collect our datasets. Shankar et al. (2017) show 
models perform far worse on locales undersampled in the training set. 

No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets
for the Developing World (Shankar et al. (link))

https://arxiv.org/pdf/1711.08536.pdf


Men also like shopping (and cooking too).

Zhao, Jieyu et al. (2017).

Undersampling/oversampling leads to undesirable spurious correlations.
Zhao, Jieyu et al. (2017) show Activity recognition datasets exhibit 

stereotype-aligned gender biases.

https://www.semanticscholar.org/paper/Men-Also-Like-Shopping%3A-Reducing-Gender-Bias-using-Zhao-Wang/8417424bf9fe7a67f06f15c487403e953ab24a96


Preferences about how our trained model should 
behave on subset of sensitive or protected 
features.

Fairness

Legally protected features:
Certain attributes are protected 
by law. For example, in the US it is 
illegal to discriminate based upon 
race, color, religion, sex, national 
origin, disability.

Legal framework will differ by 
country. 

Sensitive features:
Income, eye color, hair, skin color, 
accent, locale. 

These features may not be 
protected by law, but are often 
correlated with protected 
attributes .



Your choice of tool to audit and mitigate algorithmic bias 
will depend upon whether you know:

- the sensitive features which are adversely impacted
- have comprehensive labels for these features

- Unknown bias
- Incomplete or no 

labels for 
sensitive features 

- Known concern
- Comprehensive 

labels



- Unknown bias
- Incomplete or no 

labels for sensitive 
features 

- Known concern
- Comprehensive labels

Your choice of tool to audit and mitigate algorithmic bias 
will depend upon whether you know:

- the sensitive features which are adversely impacted
- have comprehensive labels for these features

1.



1. With known and comprehensive labels - track impact 
using intersectional metrics 

31

What is it?
Statistically evaluate model performance 
(e.g. accuracy, error rates) by “subgroup”
e.g. skin tone, gender, age

Requires
Good, “balanced” test sets that are 
representative of the actual use-case(s) 
for the model in production

Male Female Non-binary

Type I

Type II

Type III

Type IV

Type V

Type VI

Acc/FNP/FPR/other

F
i
t
z
p
a
t
r
i
c
k
 
S
k
i
n
 
T
y
p
e



Example of intersectional audit

32

Gender Shades - Evaluated classifiers’ performance across genders, skin 
types, and intersection of gender and skin type

Paper

http://gendershades.org/


When labels are known and complete - opens up range of 
remedies to mitigate impact

33

Data-Based  

1. Re-balance or re-weight 
sensitive features to 
balance training set.

2. Remove problematic feature 
from training set (not always 
feasible)



Even with comprehensive labels removing or modifying problematic feature 
from training set is not always feasible

34

Toy Task: Sleeping or 
awake?

If species is a 
protected attribute, 
how do modify the 
dataset to remove it.



There may also be cases where removing a protected or sensitive feature 
degrades model performance on that subset.

35

Toy Task: Sleeping or 
awake?

If species is a 
protected attribute, 
how do modify the 
dataset to remove it.



However, complete labels give us much more freedom and control in 
modifying the training set by re-balancing/re-weighting.

36



When labels are known and complete - range of remedies 
to mitigate impact. 

37

Data-Based  

1. Re-balance or re-weight 
sensitive features to 
balance training set.

2. Remove problematic feature 
from training set (not always 
feasible due to proxy 
variables)

Model-Based  

1. Min diff - penalizes model 
for differences in 
treatment of distributions 

2.  Rate constraint - 
guaranteeing recall or another 
rate metric is at least [x%] 
on a subset.

https://www.tensorflow.org/responsible_ai/model_remediation
https://github.com/google-research/tensorflow_constrained_optimization/blob/master/README.md


Growing software support for training with constraints.

38TFCO

https://github.com/google-research/tensorflow_constrained_optimization/blob/master/README.md


- Unknown bias
Incomplete or no 
labels for 
sensitive features 

- Known concern
- Comprehensive 

labels

What about where we don’t have complete labels for the 
sensitive attribute we care about?

2.



For high dimensional datasets:
- Labelling becomes expensive at scale, very difficult to do 

comprehensive labelling.

church Bird, nest, street 
lamp, cross, statue, 
window, window grid. 



For high dimensional datasets:
- Hard to label all proxy variables that correspond with sensitive 

feature

Task: Sleeping or awake?

While species is the 
protected attribute, many 
other variables may be 
proxy variables 
(indoor/outdoor 
background).



Additional difficulties in data collection:
- There may be legal obstacles/additional sensitivity around 

collecting labels on protected identities like race or gender.

For high dimensional datasets:
- Labelling becomes expensive at scale, very difficult to do 

comprehensive labelling.
- Hard to label all proxy variables that correspond with sensitive 

feature.



Data Cleaning

Isolating subset 
for relabelling

Identify issues with
fairness

Surfaces a tractable subset 
of the most challenging/least 

challenging examples for 
human inspection.  Avoids 

time consuming need to 
inspect every example.

In the absence of labelled data, auditing tools play an important role 
in surfacing what most needs human auditing.



Use it to clean/audit the 
dataset

Use it to improve 
training.

1 2

Global feature importance - Ranks dataset examples by which are most 
challenging.



Compute average 
variance in 
gradients (VOG) 
for an image over 
training.

0 epochs 90 epochs

Estimating Example Difficulty using Variance of Gradients, Agarwal, Souza and Hooker, 
2020

Variance of Gradients (VoG) is an example of a global ranking tool.



VoG computes a relative ranking of each class.

Estimating Example Difficulty using Variance of Gradients, Agarwal, Souza 
and Hooker, 2020

What examples does the model find challenging or easy to learn?



VOG effectively discriminates between easy & challenging examples.

CIFAR-100
(Across all percentiles)

CIFAR-100
<10th, all, >90th percentile



Understand how feature importance forms over the course of training.

Recent research suggests there are distinct stages to training. Valuable opportunity to 
understand what features emerge when.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models, 2020 (link)

Critical Learning Periods in Deep Neural Networks, 2017 (link)

https://arxiv.org/abs/2002.03206
https://arxiv.org/abs/1711.08856


Easy examples are learnt early in training, hard examples require memorization 
later in training.

Estimating Example Difficulty using Variance of Gradients, Agarwal, Souza and 
Hooker, 2020

0 epochs 90 epochs

Low Variance High Variance Low Variance High Variance

Early Stage Training Late Stage Training



Data 
Collection

Training 
using some 
objectives 
and metrics

User data 
filtered, 
ranked and 
aggregated

Users see an 
effect

user behavior informs further data collection

Data Labeling

Typical ML Pipeline

50

So far, we have 
focused discussion 
here.



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm

Data 
Collection

Training 
using some 
objectives 
and metrics

User data 
filtered, 
ranked and 
aggregated

Users see 
an effect

user behavior informs further data 
collection

Data 
Labeling

Reinforces
Bias



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm

- Intervention impacts future distribution of data.



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm
- Involve long term outcomes

- i.e long term user retention



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm
- Involve long term outcomes
- Have complex dynamics that are hard to fully codify

- i.e. recommendation box interactions



Experiment 
variant

Deployment

Long term hold-out - very small amount of traffic 
experiencing old variant even after deployment.

A/B testing

The importance of long-term holdouts in A/B testing frameworks

55

Statistical 
significance and 
positive lift of 

experiment variant



Training Models to Fulfill Multiple 
Desiderata

Chapter 2: Robustness



Robustness - Sensitivity of model behavior to deviations from the 
training set.



Robustness testing in deployment settings

- A non-statistical test to 
gain a relative understanding 
of how model performance 
changes under certain 
distribution shifts or on 
certain subsets of the 
distribution

- Should involve a clear 
understanding of the 
distribution shift that is 
being modelled. 

Is… Is not ...
- Meant to capture all 

possible failure modes

- Meant to be a precise 
measure of model 
performance once 
deployed



1. Academic benchmarks for robustness testing - ImageNet-A and ImageNet-C

ImageNet-C: Set of 
corruptions applied to 
ImageNet test image.

ImageNet-A: Natural 
adversarial examples
7,500 examples from 
iNaturalist, Flickr, 
DuckDuckGo

https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/1907.07174


2. Academic benchmarks for robustness testing - WILDS benchmark

Camelyon17 PovertyMap

WILDS benchmark

https://wilds.stanford.edu/


3. Craft a robustness benchmark specific to your deployment task.

Set aside subsets of 
data (not to be 

including to training) 
that differ in known 

ways from the training 
set distribution.

From a time range that differs from the 
training dataset range.

From a different geography than the 
training dataset locale.

From users who use a different 
language or device.



3 Craft a robustness benchmark specific to your task.

From a time range that differs from the 
training dataset range.

From a different geography than the 
training dataset locale.

From users who use a different 
language or device.

Valuable way to 
audit for 

algorithmic bias 
when you only 

have labels for 
a limited subset 
of the dataset 

with the 
sensitive 

feature you want 
to track.



The myth of the fair, robust, 
compact, private, high performance 

model.

Chapter 3: Trade-offs



Flawed assumption -- when we optimize for a desirable property, all 
other properties are held static.

In complicated 
systems, it is 
hard to vary 

one variable in 
isolation or 
foresee all 

implications.

From iron curtain to green belt

European green belt

https://web.archive.org/web/20100129132357/http://europeangreenbelt.org/001.route_ce.html


Model Compression - 
compact machine learning 
models  to work in 
resource constrained 
environments.

Model fragility and 
security - deploy secure 
models that protect user 
privacy.

Fairness - imposes 
constraint on 
optimization that 
reflects societal 
norms of what is fair.

It is unrealistic to assume optimizing for one property holds all others static.

How we often 
talk about 
different 

properties in 
the literature. 



Model Compression - 
compact machine learning 
models  to work in 
resource constrained 
environments.

Model fragility and 
security - deploy secure 
models that protect user 
privacy.

Fairness - imposes 
constraint on 
optimization that 
reflects societal 
norms of what is fair.

Optimizing for one objective will entail trade-offs with others.



Data 
Collection

Training 
using some 
objectives 
and metrics

User data 
filtered, 
ranked and 
aggregated

Users see an 
effect

user behavior informs further data collection

Data Labeling

Typical ML Pipeline

67

The role of our 
modelling choices on 
contributing to 
algorithmic bias.



Model 
Interpretability - 
reliable 
explanations for 
model behavior.

Model Compression - 
compact machine learning 
models  to work in 
resource constrained 
environments.

Model fragility and 
security - deploy secure 
models that protect user 
privacy.

Fairness - imposes 
constraint on 
optimization that 
reflects societal 
norms of what is fair.

Case Study: How does model compression trade-off against other 
properties we care about such as robustness and fairness?



A “bigger is 
better” race in 
the number of 
model 
parameters has 
gripped the 
field of machine 
learning.

Canziani et al., 2016, Open AI 2019  

https://arxiv.org/pdf/1605.07678.pdf
https://openai.com/blog/ai-and-compute/


Bigger models complicates democratization of AI models to resource 
constrained environments.

As you increase size of networks:
- More memory to store
- Higher latency for each 

forward pass in training + 
inference time

 
ML at the edge:

- Many different devices, 
hardware constraints

- Many different resource 
constraints - memory, 
compute

- Power, connectivity varies



Benefits of Compressed Models

- High Preservation of Top-1 Accuracy 
- Low Latency
- Low Power Usage
- Portability etc...



Compression techniques like pruning and quantization remove 
weights from a network with remarkably little impact to top-line 
metrics.

[[The State of Sparsity in Deep Neural Networks, 2019, Gale, Elsen, Hooker]]

With 90% of 
the weights 
removed, a 
ResNet-50 only 
loses ~3% of 
performance

https://arxiv.org/abs/1902.09574


0% pruning
76.70%

50% pruning
76.20%

How can networks with radically different structures and number of 
parameters have comparable performance? 



One possibility is that 
test-set accuracy is not a 

precise enough measure to 
capture how pruning impacts 
the generalization properties 

of the model. 

In this work, we go beyond 
test-set accuracy.



Measure divergence in 
class level and exemplar 

classification 
performance.

Measure sensitivity to 
certain types of 

distributional shifts. 
(natural adversarial 

examples and 
corruptions)

Here, we ask - How does model behavior diverge 
as we vary level of compression?

1. 2.



0 % 90 %

Overparameterized 
Dense  Model

Model with 90% 
weights removed

Train populations of models with minimal differences in test-set accuracy to 
different end sparsities [0%, 30%, 50%, 70%, 90%, 95%, 99%].

Experimental Framework



Selective Brain Damage: Measuring the Disparate Impact of Model Pruning
Sara Hooker, Aaron Courville, Yann Dauphin, Andrea Frome
Learn more about PIEs at https://weightpruningdamage.github.io/

Sparsity of 90% means that by the end of training the model only has 10% of 
all weights remaining. Apply mask of 0 to remaining weights. 

Initial weight matrix After activations have been 
removed.

Image source

https://weightpruningdamage.github.io/
http://markus-beuckelmann.de/downloads/model-compression-slides.pdf


Some nice  properties of this empirical set-up:

0 % 90 %

Overparameterized 
Dense  Model

Model with 90% 
weights removed

Models all achieve 
similar regime of 

top-line performance.

We can precisely vary 
how radically the 

weight representation 
differs - by controlling 

end sparsity.



Why is a narrow 
part of the data 
distribution far 

more sensitive to 
varying capacity?

Key results upfront: top level metrics hide critical differences in 
generalization between compressed and compressed populations of 
models.

Varying 
capacity 

disproportion
ately and 

systematically 
impact a small 

subset of 
classes and 
exemplars.

Compressed 
models have 

amplified 
sensitivity to 
adversarial 

examples and 
common 

corruptions. 

1. 2.



Compression trade-off with robustness



A. Sensitivity to natural adversarial images ImageNet-C

Amplification of sensitivity to 
some perturbations are far more 

pronounced than others.

Sparse models are particularly 
sensitive to noise.

Hooker et al. 

https://arxiv.org/abs/1911.05248


A. Sensitivity to natural adversarial images ImageNet-A

ImageNet-A: Natural adversarial 
examples
7,500 examples from iNaturalist, 
Flickr, DuckDuckGo

Hooker et al. 

https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/1911.05248


Compression trade-off with
 algorithmic bias



Pruning Identified 
Exemplars (PIEs) 

are images where predictive 
behavior diverges between a 
population of independently 
trained compressed and 
non-compressed models.



ImageNet test-set.
True label?





ImageNet test-set.
True label?





- Restricting inference to PIEs drastically degrades model performance.
- For ImageNet, removing PIEs from test-set improves top-1 accuracy beyond 

baseline.

PIEs are also more challenging for algorithms to classify.



PIEs over-index on the long-tail of underrepresented attributes.

Attribute Proportion of CelebA Training Data vs. relative 
representation in PIE



Compression disproportionately impacts underrepresented 
features.



Pruning amplifies algorithmic bias when the underrepresented 
feature is protected (age/gender)

[[Hooker et al. 2019, Hooker, Moorosi et al, 2020]] 

https://arxiv.org/abs/1911.05248
https://arxiv.org/pdf/2010.03058.pdf


Case study 2: Privacy trade-off with fairness.

Bagdasaryan et al.

https://papers.nips.cc/paper/2019/file/fc0de4e0396fff257ea362983c2dda5a-Paper.pdf


Beyond “Algorithmic bias 
is a data problem.”

Algorithms do not simply 
impartially reflect 
biases. Choices we make 
when we model can amplify 
or minimize harm.

This is because disparate 
harm is not held static 
while other properties are 
optimized. 

Model Compression - 
compact machine learning 
models  to work in 
resource constrained 
environments.

Model fragility and 
security - deploy secure 
models that protect user 
privacy.

Fairness - imposes 
constraint on 
optimization that 
reflects societal 
norms of what is fair.



The known unknowns

Chapter 4: Interpretability 



Model 
Interpretability - 
reliable 
explanations for 
model behavior.

Model Compression - 
compact machine learning 
models  to work in 
resource constrained 
environments.

Model fragility and 
security - deploy secure 
models that protect user 
privacy.

Fairness - imposes 
constraint on 
optimization that 
reflects societal 
norms of what is fair.

 Interpretability tools aim to provide insight into model behavior.  Enable 
auditing of other desirable properties such as fairness and robustness.



Emphasis we place on interpretability will depend on multiple factors

 Can the model 
adversely impact 
human welfare?

Sensitive domain

Does improving 
interpretability jeopardize 
other desirable properties 
i.e. model security or 
privacy?

Trade-off with other 
model desiderata

Is historical data of 
model behavior in 
different test 
conditions limited?

Historical performance 



Criteria for what is meaningful as an interpretable tool will deep 
upon our vantage point and downstream tasks

End ConsumerDomain Expert



Specialist: Will want to 
place the model 

explanation within 
relative context. Both 

an individual 
explanation and global 

ranking desirable.

Deployment engineer: Will 
want to gain insight into 

domain shift, surface 
examples which are most 

challenging. Automatically 
surface candidates for 

additional annotation. Audit 
any model errors.

End user: Will 
always want to 

know the 
explanation for 
their data point.

Vantage point also impacts the type of interpretability tooling 
that is most useful.

A local explanation often fails to provide 
enough context for actionable downstream 

decision making.



Understanding how model behavior aligns/diverges from human 
knowledge has become even more paramount.

1) We have chosen functional forms that delegates 
feature representation to the model - harder 
to extract feature importance estimates.

2) Models are widely deployed in settings where 
human welfare can be impacted adversely.

3) The size of modern day datasets mean it is 
critical we provide tools which surface what 
is most critical for human inspection.



- Goal is to gain intuition 
into model behavior

- We are unlikely to ever 
sign off an a model as 
interpretable.

Interpretability does not require explaining everything about a model.



Post-hoc Interpretability 
Methods

Building Interpretable 
Models

1. Neuron/weight 
importance

2. Input feature 
importance

3. Outlier detection

1. Model Distillation
2. Regularization of 

weights during 
training to 
condition heat map 
properties.

Visualization/Human guided 
investigations

Most research has focused 
here.



Distill the knowledge of a large 

neural network into a 

functional form considered 

more interpretable.

(note: hard to compete in 

accuracy)

[[Ba et al. 2014, Hinton et al., 2015, Frosst and Hinton , 2017, Wang and Rudin, 2015, Tan et al. 2018]]

Distilling a Neural Network Into a Soft 
Decision Tree [[Frosst and Hinton , 2017]].

1: Model Distillation



t-Distributed Stochastic Neighbor 
Embedding (t-SNE)
[[van der Maaten and Hinton, 2008]

2: Visualization tools reduce high dimensionality of deep neural networks

Visualizing the loss landscape of 
deep neural networks
[[paper]]

https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf


3: Agent Based Exploration

Baker et al, 2019 (link)

https://arxiv.org/abs/1909.07528


4: Estimates of feature importance

Global Feature ImportanceLocal Feature Importance Weights and Activations



4.1: Local Feature Importance

Estimates the feature importance of the attributes in a data example to a 
single model prediction.

[Erhan et al., 2009, Simonyen et al.,2013, Springenberg et al.,2015, Fong and Vedaldi 2017, Sundararajan et al. 2017, Smilkov et al., 
2017., many more...]



4.2: Global Feature Importance

Estimating Example Difficulty using Variance of 
Gradients, Agarwal* and Hooker*, 2020

Estimates the feature importance of the attributes to the overall decision boundary. 
What examples does the model find challenging or easy to learn?

What does a compressed deep neural 
network forget? Hooker et al. 2020



4.3: Weight and Activations

Neuron interpretation [[Olah,C et al, 2017 ] Weight/layer ablation studies 
[[Morcos A. et al., 2018]]

Estimates the role or importance of individual neurons or weights.



Global Feature ImportanceLocal Feature Importance Weights and Activations

A large amount of interpretability research for deep neural 
networks has focused on local feature importance.



Human

Machine learning model

Model 
Explanation

An interpretable 
explanation of a 
model prediction 
must be both:
meaningful to a 
human + an 
accurate reflection 
of the model.



Key open challenges in interpretability:

1) Meaningful does not equate with reliable - 
identifying failure points in explanations.

2) Disproportionate emphasis on feature importance 
at the end/after training.

3) Providing both global and local explanations of 
model behavior that are scalable to deployment 
settings. 



Closing Thoughts (and Q&A)

Thanks for the invite Chip!



Estimating Example Difficulty using Variance 
of Gradients  Chirag Agarwal*, Sara Hooker* 
[[link]]

What do compressed deep neural networks 
forget?, Sara Hooker, Aaron Courville,  Gregory 
Clark, Yann Dauphin, Andrea Frome [[link]]

Characterizing Bias in Compressed Models 
Sara Hooker*, Nyalleng Moorosi*, Gregory Clark, 
Samy Bengio, Emily Denton [[link]]

More work -- links in the slides. Feel free to email 
me for a copy.

Final takeaways:

Beyond test-set accuracy - It is not 
always possible to measure the 
trade-offs between criteria using 
test-set accuracy alone.

The myth of the compact, private, 
interpretable, fair model - Desiderata 
are not independent of each other. 
Training beyond test set accuracy 
requires trade-offs in our model 
preferences.

Relative vs local feature importance - 
human understanding is relative, 
promising work to surface subset of 
data points that are more/less 
challenging to aid understanding.

.
Email: shooker@google.com

Questions?

https://drive.google.com/file/d/1-jbmOy42dn3t7qyIhHpzA1TxKKYtUUwn/view?usp=sharing
https://arxiv.org/abs/1911.05248
https://arxiv.org/abs/2010.03058

