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My research agenda to-date has focused on:
- Going beyond test-set accuracy
- Training models that fulfill multiple desired criteria

Fairness - imposes

Model Comprgssmn - ® VA constraint on
compact machine learning optimization that
models to work In A reflects societal
resource constrained P

” norms of what is fair.
environments.

Model fragility and Model N
security - deploy secure Interpretability -
models that protect user reliable

privacy. W 4 explanations for

model behavior.




Model Deployment Beyond Test Set Accuracy

The myth of the

Accuracy without - : robust, interpretable, - -
“true” learning. : compact, fair, high : : Interpretability Tools
. test-set accuracy - :
model.

I°’11 mention research collaborations with my colleagues:

Nyalleng Moorosi, Gregory Clark, Samy Bengio, Emily Denton, Aaron
Courville, Yann Dauphin, Andrea Frome, Chirag Agarwal, Daniel Souza,
Dumitru Erhan.



Accuracy without
“true” learning.



The Clever Hans Effect 1891 - 1907

Hans the horse:
- arithmetic functions
- identify colours
- Count the crowd

Google



Myth of Clever Hans persisted 1891 - 1907

Experimental Design -

Can Hans answer a question
if the human does not know
the answer?

W == A= WS Hans answered correctly by
‘ TR P -L"YT‘[ "IT"” “‘4 A‘ "\‘ \‘ 3 '.::', ‘-‘ \ ‘: . . 0 .
g e | e . picking up on microscopic

‘ v b e & clues.

High accuracy without “true”

learning.

Google



Deep Neural Networks have resulted in a huge leap forward in
top-line performance on image classification tasks.

Computer vision tasks

Image Classification Object localization Object recognition

Google



Performance on ImageNet

Image Classification on ImageNet
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Before 2012 - Hand engineered encoders were very interpretable
but had difficulty generalizing well beyond a few narrow tasks.

Hog Filter

Google Image source: Digital Globe, Wikipedia



2012 - Enter convolutional neural networks:
- AlexNet swept the competition on ImageNet using CNNs. Error rate of
16.4% (runner up was at 26.2%).

Huge advantage = CNN's have dominated ever since.
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Instead of telling the model what features to extract, the model learns
what features are important for the task through feedback (minimizing the

loss through backpropagation).

Google

We give up full specification of
the function - “black-box”
because difficult to specify
why model made a certain

prediction.



Delegating learning of the function to the model can (and has) led to
Clever Hans moments.

Cow Limousine

High accuracy without “true”
learning.

Berry et al. (paper link)
Hooker et al. 2019 (paper link)

Google



https://arxiv.org/pdf/1807.04975.pd
https://arxiv.org/abs/1911.05248

Delegating learning of the function to the model can (and has) led to
Clever Hans moments.

Sheep Dog

A herd of sheep grazing on a lush green hillside
Tags: grazing, sheep, mountain, cattle, horse

High accuracy without “true”
Blog link learning.

Google


https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep

When Cleverhans moments happen in sensitive domains, there can
be a huge cost to human welfare.

Skin lesions Pneumonia

Basal cell carcinomas * Epidermal benign

* Epidermal malignant
Melanocytic benign

* Melanocytic malignant

A B
s m
a8 8 .

Esteva et al. (link) High accuracy without “true”

Zech et al. 2018 (link)
AlBadaway et al. 2018 (link)

Squamous cell carcinomas

learning.

Google


https://www.nature.com/articles/nature21056.epdf
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683
https://pubmed.ncbi.nlm.nih.gov/29356028/

Top line metrics often hide

critical model behavior.

In deployment settings,
necessary to go beyond top-1,
top-5 to ensure desirable model

behavior.




How does my model perform...

Classification accuracy / precision-recall curve /
logarithmic loss / area under the curve / mean
squared error / mean absolute error /

F1score / standard deviation / variance /
confidence intervals /

Google

How might my model perform...

on a sample of test data / on cross-slices of test
data / on an individual data point / if a datapoint
is perturbed / if model thresholds were different /
if optimized differently / across all values of a



Test-set accuracy does not guarantee that the trained
function fulfills other properties we may care about.

loss =

B

=1

test-set accuracy - |
extract a
representation for
the task that is
generalizable to
unseen data.

Compactness

Interpretability

Fairness

Robustness



Typical loss functions in machine learning (MSE, Hinge-Loss and CE)
impose no preference for functions that are compact,
interpretability, fairness and robust.

Compactness

Interpretability

B
loss = Z L(Yi, i) - _. Fairness
i=1

Adversarial Robustness

Google



Deployment models to fulfill multiple desiderata.

test-set accuracy - extract a representation for the
task that is generalizable to unseen data.

_______________________________________________________________________________________________________________

Model Compression Cheap - fast to evaluate
Compact - minimal memory

Understandable - Model function performance
meaningful to humans.

" Adversarial Robustness N'ot yulnerable to non-meaningful changes in data
: distribution.

Fairness Reflect preferences about how model should behave on
subsets of protected features.



Training Models to Fulfill Multiple
Desiderata

Chapter 1. Fairness



© Katerina Kamprani - The Uncomfortable

THE UNCOMFORTABLE WINE GLASS
2015, Handmade blown glass . ... o e oo

© Katerina Kamprani - The Uncomfortable

Google Katerina Kamprani



https://www.theuncomfortable.com/

What if discomfort is not uniform, but targeted?

Google


https://en.wikipedia.org/wiki/Hostile_architecture

Algorithmic bias - errors that create unfair outcomes.
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Figure 2: Distribution of the geographically identifiable images in the Open Images data set, by

country. Almost a third of the data in our sample was US-based, and 60% of the data was from the

FEMALE FEMALE six most represented countries across North America and Europe.

Gender shades (link) How a mode.l treats qnderrgpresentgd features
Shankar et al. (link) often coincide with notions of fairness.



http://gendershades.org/
https://arxiv.org/pdf/1711.08536.pdf

Geographic bias in how we collect our datasets. Shankar et al. (2017) show
models perform far worse on locales undersampled in the training set.

No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets
for the Developing World (Shankar et al. (link))


https://arxiv.org/pdf/1711.08536.pdf

Undersampling/oversampling leads to undesirable spurious correlations.
Zhao, Jieyu et al. (2017) show Activity recognition datasets exhibit
stereotype-aligned gender biases.
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Men also like shopping (and cooking t0o).

Zhao, Jieyu et al. (2017).



https://www.semanticscholar.org/paper/Men-Also-Like-Shopping%3A-Reducing-Gender-Bias-using-Zhao-Wang/8417424bf9fe7a67f06f15c487403e953ab24a96

Fairness

Ipreferences about how our trained model should

features.

iy ——

Legally protected features:
Certain attributes are protected
by law. For example, in the US it is
illegal to discriminate based upon
race, color, religion, sex, national
origin, disability.

Legal framework will differ by
country.

Google

behave on subset of sensitive or protected

Sensitive features:
Income, eye color, hair, skin color,
accent, locale.

These features may not be
protected by law, but are often
correlated with protected
attributes .



Your choice of tool to audit and mitigate algorithmic bias
will depend upon whether you know:

- the sensitive features which are adversely impacted
- have comprehensive labels for these features

- Unknown bias - Known concern

- Incomplete or no - Comprehensive
labels for labels

sensitive features

Google



Google

Your choice of tool to audit and mitigate algorithmic bias

will depend upon whether you know:

- the sensitive features which are adversely impacted

- have comprehensive labels for these features

Unknown bias
Incomplete or no
labels for sensitive
features

- Known concern
- Comprehensive labels




1. With known and comprehensive labels - track impact

using intersectional metrics

What isit?

Statistically evaluate model performance
(e.g. accuracy, error rates) by “subgroup”
e.g. skin tone, gender, age

Requires

Good, “balanced” test sets that are
representative of the actual use-case(s)
for the model in production

Google

Fitzpatrick Skin Type

Male

Female Non-binary

Type

Type

I1

Type

ITT

Type

IV

Acc/FNP/FPR/other

Type

Type

VI

31




Example of intersectional audit

Gender Shades - Evaluated classifiers’ performance across genders, skin
types, and intersection of gender and skin type

Classifier Metric All F M Darker Lighter | DF DM LF LM
PPV (%) 93.7 893 974 87.1 99.3 79.2 | 940 98.3 100
MSFT Error Rate(%) 6.3 10.7 2.6 12.9 0.7 20.8 | 6.0 1.7 0.0
TPR (%) 93.7 96.5 91.7 87.1 99.3 92.1 | 83.7 100 98.7
FPR (%) 6.3 83 3.5 12.9 0.7 16.3 | 7.9 1.3 0.0
PPV (%) 90.0 787 99.3 83.5 95.3 65.5 [99.3 94.0 99.2
Bt Error Rate(%) 10.0 21.3 0.7 16.5 4.7 34.5 | 0.7 6.0 0.8
TPR (%) 90.0 98.9 85.1 83.5 95.3 98.8 | 76.6 98.9 929
FPR (%) 10.0 149 1.1 16.5 4.7 234 | 1.2 T:1 1:1
PPV(%) 87.9 T79.7 944 77.6 96.8 65.3 | 88.0 92,9 99.7
IBM Error Rate(%) 12.1 203 5.6 22.4 3.2 34.7 | 120 7.1 0.3
TPR (%) 87.9 921 85.2 77.6 96.8 82.3 | 74.8 99.6 94.8
FPR (%) 121 148 79 22.4 3.2 25.2 | 17.7 520 04

Table 4: Gender classification performance as measured by the positive predictive value (PPV), error
rate (1-PPV), true positive rate (TPR), and false positive rate (FPR) of the 3 evaluated
commercial classifiers on the PPB dataset. All classifiers have the highest error rates for

darker-skinned females (ranging from 20.8% for Microsoft to 34.7% for IBM).
Google


http://gendershades.org/

When labels are known and complete - opens up range of
remedies to mitigate impact

Data-Based

1. Re-balance or re-weight
sensitive features to
balance training set.

2. Remove problematic feature
from training set (not always
feasible)

Google

33



Even with comprehensive labels removing or modifying problematic feature

from training set is not always feasible

Google

Toy Task: Sleeping or
awake?

If species 1is a
protected attribute,
how do modify the
dataset to remove it.

34



There may also be cases where removing a protected or sensitive feature

degrades model performance on that subset.

Google

Toy Task: Sleeping or
awake?

If species 1is a
protected attribute,
how do modify the
dataset to remove it.

35



However, complete labels give us much more freedom and control in
modifying the training set by re-balancing/re-weighting.

Google

36



When labels are known and complete - range of remedies

to mitigate impact.

Data-Based

Model-Based

1. Re-balance or re-weight
sensitive features to
balance training set.

2. Remove problematic feature
from training set (not always
feasible due to proxy
variables)

Google

1. - penalizes model
for differences in
treatment of distributions

2. -
guaranteeing recall or another
rate metric is at least [x%]
on a subset.

37


https://www.tensorflow.org/responsible_ai/model_remediation
https://github.com/google-research/tensorflow_constrained_optimization/blob/master/README.md

Growing software support for training with constraints.

How does MinDiff work?

Given two sets of examples from our dataset, MinDiff penalizes the model during training for differences in the
distribution of scores between the two sets. The less distinguishable the two sets are based on prediction scores, the

smaller the penalty that will be applied.

Frequency

02 03
Predicted Score

02 03
Predicted Score

Google

38


https://github.com/google-research/tensorflow_constrained_optimization/blob/master/README.md

What about where we don’t have complete labels for the
sensitive attribute we care about?

-

- Unknown bias - Known concern
Incomplete or no - Comprehensive
labels for labels

sensitive features

Google



For high dimensional datasets:
- Labelling becomes expensive at scale, very difficult to do
comprehensive labelling.

church Bird, nest, street
lamp, cross, statue,
window, window grid.

Google



For high dimensional datasets:

- Hard to label all proxy variables that correspond with sensitive
feature

Task: Sleeping or awake?

While species is the
protected attribute, many
other variables may be
proxy variables
(indoor/outdoor
background).

Google



For high dimensional datasets:

- Labelling becomes expensive at scale, very difficult to do
comprehensive labelling.

- Hard to label all proxy variables that correspond with sensitive
feature.

Additional difficulties in data collection:

- There may be legal obstacles/additional sensitivity around
collecting labels on protected identities like race or gender.

Google



In the absence of labelled data, auditing tools play an important role
in surfacing what most needs human auditing.

Data Cleaning

Isolating subset
for relabelling

éﬁ

. Surfaces a tractable subset
. of the most challenging/least :
. challenging examples for ® v
human inspection. Avoids Identify issues with

time consuming need to

: fairness
inspect every example. AR



Global feature importance - Ranks dataset examples by which are most

challenging.

1

Use it to clean/audit the
dataset

Active Review ‘ ’ - Cleaner Labels
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Variance of Gradients (VoG) is an example of a global ranking tool.

VOG; = — ,REEE(Sa-;a))

gradient Compute average
Gradient variance in

R gradients (VOG)
for an image over
training.

dragonfly, darn
——

0 epochs 90 epochs

Estimating Example Difficulty using Variance of Gradients, Agarwal, Souza and Hooker,
2020



VoG computes a relative ranking of each class.

What examples does the model find challenging or easy to learn?

Lowest VOG Highest VOG

horse

Estimating Example Difficulty using Variance of Gradients, Agarwal, Souza
and Hooker, 2020



VOG effectively discriminates between easy & challenging examples.
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Understand how feature importance forms over

the course of training.
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Figure 6: Spearman rank correlation between
C-score and distance-based score on hidden rep-
resentations.
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Recent research suggests there are distinct stages to training. Valuable opportunity to
understand what features emerge when.

Critical Learning Periods in Deep Neural Networks, 2017 (link)

k)

Characterizing Structural Regularities of Labeled Data in Overparameterized Models, 2020 (link


https://arxiv.org/abs/2002.03206
https://arxiv.org/abs/1711.08856

Easy examples are learnt early in training, hard examples require memorization
later in training.

Low Variance High Variance

0 epochs 90 epochs

Early Stage Training Late Stage Training

Estimating Example Difficulty using Variance of Gradients, Agarwal, Souza and
Hooker, 2020



Typical ML Pipeline

Data

Collection

!
.
.

4

Data Labeling |

Google

So far, we have
focused discussion
/

here.

.ll
.
.

<

Training
using some
objectives
and metrics

User data
filtered,
ranked and
aggregated

1

Users see an
effect

user behavior informs further data collection =

50



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm

User data
Data filtered,
4 Labeling | 4 ranked and |
_ Training | 3ggregated
Data 4 using some ;
Collection objectives Users see
> and metrics an effect
Reinforces o
Bias I user behavior informs further data

collection

Google




In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm
- Intervention impacts future distribution of data.

Google



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm
- Involve long term outcomes
- i.elong term user retention

Google



In deployment settings fairness is rarely static.

Problems often have:
- Feedback loops that amplify disparate harm
- Involve long term outcomes
- Have complex dynamics that are hard to fully codify
- i.e. recommendation box interactions

Google



The importance of long-term holdouts in A/B testing frameworks

Statistical
significance and
positive lift of

/// experiment variant

Experiment
variant

- = P

A/B testing .................. ce e Deployment

Google

Long term hold-out - very small amount of traffic
experiencing old variant even after deployment.

55



Training Models to Fulfill Multiple
Desiderata

Chapter 2: Robustness



Robustness - Sensitivity of model behavior to deviations from the
training set.

Google



Robustness testing in deployment settings

s Is not
- A non-statistical test to § . - Meant to capture all
gain a relative understanding § possible failure modes
of how model performance : |
changes under certain 5 5
distribution shifts or on § . - Meant to be a precise
certain subsets of the § § measure of model
distribution § § performance once
: | deployed

- Should involve a clear
understanding of the
distribution shift that is
being modelled.



1.

Google

ImageNet-A

Academic benchmarks for robustness testing - ImageNet-A and ImageNet-C

Fox Squirrel
T g e
£ W e

ImagelNet-C: Set of
corruptions applied to
ImageNet test image.

ImageNet-A: Natural
adversarial examples
7,500 examples from
iNaturalist, Flickr,
DuckDuckGo



https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/1907.07174

2. Academic benchmarks for robustness testing - WILDS benchmark
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WILDS benchmark



https://wilds.stanford.edu/

3. Craft a robustness benchmark specific to your deployment task.

Set aside subsets of
data (not to be
including to training)
that differ in known
ways from the training
set distribution.

Google

From a time range that differs from the
training dataset range.

From a different geography than the
training dataset locale.

From users who use a different
language or device.




3 Craft a robustness benchmark specific to your task.

Valuable way to
audit for
algorithmic bias
when you only
have labels for
a limited subset
of the dataset
with the
sensitive
feature you want
to track.

Google

From a time range that differs from the
training dataset range.

From a different geography than the
training dataset locale.

From users who use a different
language or device.




The myth of the fair, robust,
compact, private, high performance
model.

Chapter 3: Trade-offs



Flawed assumption -- when we optimize for a desirable property, all
other properties are held static.

From iron curtain to green belt

In complicated
systems, it is
hard to vary
one variable in
isolation or
foresee all
implications.

Google


https://web.archive.org/web/20100129132357/http://europeangreenbelt.org/001.route_ce.html

It is unrealistic to assume optimizing for one property holds all others static.

Fairness - imposes

® v constraint on
optimization that
v reflects societal
AR norms of what is fair.
How we often
talk about ]
different Model Compression -

compact machine learning
models to work in
resource constrained
environments.

properties in
the literature.

security - deploy secure
models that protect user
privacy.

oo
BN
O o A
ﬂ Model fragility and
=
E



Optimizing for one objective will entail trade-offs with others.

Model fragility and
security - deploy secure
models that protect user
privacy.

Fairness - imposes
constraint on
optimization that
reflects societal
norms of what is fair.

Model Compression -
W\ © . .
0 compact machine learning
T Opg\ @ models to workin
og o resource constrained

environments.



Typical ML Pipeline

Data

Collection

Google

!
.
.

The role of our
modelling choices on
contributing to
algorithmic bias.

4 Data Labeling |

User data

// filtered,

4 ranked and

Training aggregated
d using some :
objectives A

and metrics Users see an
effect

user behavior informs further data collection ¥

67



Case Study: How does model compression trade-off against other
properties we care about such as robustness and fairness?

Model

Interpretability -
reliable
. explanations for

model behavior.

Fairness - imposes
constraint on
optimization that
reflects societal
norms of what is fair.

Model Compression -
compact machine learning
models to work in
resource constrained
environments.

Model fragility and
security - deploy secure
models that protect user
privacy.



Petaflop/s-days

le+h
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TI7 Dota 1vl
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ResNets
le-2 AlexNet
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Google 2016, 2019


https://arxiv.org/pdf/1605.07678.pdf
https://openai.com/blog/ai-and-compute/

Bigger models complicates democratization of AI models to resource
constrained environments.

As you increase size of networks:
- More memory to store
- Higher latency for each
forward pass in training +
inference time

ML at the edge:
- Many different devices,
hardware constraints
- Many different resource
constraints - memory,
compute
- Power, connectivity varies

Google



Benefits of Compressed Models

- High Preservation of Top-1 Accuracy
- Low Latency

ow Power Usage e

- g Fraction Pruned Top1 Quantization Top1

- P th No Compression  94.73 : ;

Ortabl | Ity etC"' 0.3 94.75 hybrid int8 94.65

0.3 9481 fixed-pointint8 94.65
0.7 94.44 - -
0.9 94.07
0.95 93.39

0.99 90.98




Compression techniques like pruning and quantization remove
weights from a network with remarkably little impact to top-line
metrics.

Il baseline B variational dropout
B magnitude pruning random pruning
0.80 With 90% of
0.75 the weights
>0.70 removed, a
£ 0.65 ResNet-50 only
S 0.60 loses ~3% of
7 0.55 performance
2 0.50
0.45
0'4%.5 0.6 0.7 0.8 0.9 1.0
Sparsity

[[The State of Sparsity in Deep Neural Networks, 2019, Gale, Elsen, Hooker]]



https://arxiv.org/abs/1902.09574

How can networks with radically different structures and number of
parameters have comparable performance?

0% pruning 50% pruning
76.70% 76.20%



One possibility is that
test-set accuracy is not a
precise enough measure to
capture how pruning impacts
the generalization properties
of the model.

In this work, we go beyond
test-set accuracy.




Here, we ask - How does model behavior diverge
as we vary level of compression?

1.

Measure sensitivity to
certain types of
distributional shifts.
(natural adversarial
examples and
corruptions)

2.

Measure divergence in
class level and exemplar
classification
performance.




Experimental Framework

Train populations of models with minimal differences in test-set accuracy to
different end sparsities [0%, 30%, 50%, 70%, 90%, 95%, 99%].

_
| | | | |
0% 90 %
Overparameterized Model with 90%

Dense Model weights removed



Sparsity of 0% means that by the end of training the model only has 10% of
all weights remaining. Apply mask of O to remaining weights.

Original Network Pruning

Initial weight matrix After activations have been
removed.

Image


https://weightpruningdamage.github.io/
http://markus-beuckelmann.de/downloads/model-compression-slides.pdf

Some nice properties of this empirical set-up:

We can precisely vary

Models all achieve how radically the
similar regime of weight representation
top-line performance. differs - by controlling

end sparsity.

0 % 90 %

Overparameterized Model with 90%
Dense Model weights removed



Key results upfront: top level metrics hide critical differences in

generalization between compressed and compressed populations of

models.

1 =  Compressed
models have
amplified
sensitivity to
adversarial
examples and
common
corruptions.

2 o Varying
capacity
disproportion
ately and
systematically
impact a small
subset of
classes and
exemplars.

Why is a narrow

part of the data

ey distribution far
more sensitive to
varying capacity?




Compression trade-off with robustness



A. Sensitivity to natural adversarial images ImageNet-C

Sensitivity to ImageNet-C Corruptions
(Relative to Non-Pruned Model)

°  Trmm= -mpm || .IIII II|

Amplification of sensitivity to
M some perturbations are far more
= pronounced than others.

=40 mm impulse_noise
mmm shot_noise

% Top-1 Accuracy Relative

’ 10 P odel Sarsity o0 Sparse models are particularly
sensitive to noise.

Hooker et al.



https://arxiv.org/abs/1911.05248

A. Sensitivity to natural adversarial images ImageNet-A

Top-1 and Top-5 Accuracy on ImageNet-A

(Relative to Non-Pruned Model) ImageNet-A: Natural adversarial
o I- I examples

—19] 7,500 examples from iNaturalist,
320 Flickr, DuckDuckGo
§ -30-
<
':;1'—40-
E B T ' ‘ é‘fo; 22 ? e
< _60- < ' , {, NS ':

=10} BN norm_top_l_accuracy % : :

EEE norm_top_5_accuracy g %
—80, 10 30 50 70 9 95
Model Sparsity

Hooker et al.



https://arxiv.org/abs/1907.07174
https://arxiv.org/abs/1911.05248

Compression trade-off with
algorithmic bias



Pruning Identified
Exemplars (PIEs)

are images where predictive
behavior diverges between a
population of independently
trained compressed and
non-compressed models.

plastic bag

Non-PIE PIE




ImageNet test-set.
True label?




toilet seat

PIE

Non-PIE




ImageNet test-set.
True label?




espresso
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PIEs are also more challenging for algorithms to classify.

Top-1 Accuracy on PIE, All Test-Set, Non-PIE

CelebA CIFAR-10 ImageNet

tnchee

. Tog-l teat wet Jcouracy
| 2 ] . » ]

W Top L bud sl Accurecy
¢ * 3 < ‘.
N Top L bawt aet Azcurecy

g

- tembre
-| "
$ 3 Z
2 &
<

g

§
&
-

- Restricting inference to PIEs drastically degrades model performance.
- For ImageNet, removing PIEs from test-set improves top-1accuracy beyond
baseline.



PIEs over-index on the long-tail of underrepresented attributes.

CelebA Attribute PIE Representation
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% of the Training Set

%

Attribute Proportion of CelebA Training Data vs. relative
representation in PIE



Compression disproportionately impacts underrepresented

features.

CelebA Attribute % of Training Set
100

% of Training Set

O O N2 A%
Q@%\z(\;g@%&@
v\o(\é 0
Celeb-A High Frequency Sub-Groups Low Frequency Sub-Groups
.
Y = {Blonde, € ) ‘
Dark Haired} - '3 !
Training set:
162,770 Dark Haired Males Dark Haired Females Blonde Females Blond Male Blonde Old

874 71,628 22,880 1,387 4,037
33; 1% 14% 0.85% 2.48%



Pruning amplifies algorithmic bias when the underrepresented

feature is protected (age/gender)

Unitary Intersectional
Model | Metric | Aggregate | M F Y 0O | MY MO FY FO
Baseline Error 5.30% 237% 115% 5.17% 573% | 2.28% 2.50% 517%  5.73%
(0% pruning) FPR 2.73% 093%  4.12%  2.59%  3.18% | 0.81% 1.12% 259%  3.18%
FNR 22.03% | 62.65% 19.09% 21.35% 2447% | 60.45% 66.87%  21.35% 24.47%

Normalized Difference Between 1) Compressed and 2) Non-Compressed Baseline

Compressed Error 24.63% 24.49% 24.67% 20.64% 35.84% | 7.96% 49.12%  20.64%  35.84%
(95% pruning) | FPR 12.72% 49.54%  6.32% 335%  36.02% | 5.37%  101.88%  3.35%  36.02%
FNR 34.22% 841%  4030% 33.83% 35.39% | 9.21% 6.98% 33.83% 35.39%

Table 3: Performance metrics disaggregated across Male (M), not Male (F), Young (Y), and not Young
(O) sub-groups. For all error rates reported, we average performance over 10 models. Top Row: Baseline

error rates, Bottom Row: Relative change in error rate between baseline models and models pruned to 95%
sparsity,

Google [[Hooker et al. 2019, Hooker, Moorosi et al, 2020]]



https://arxiv.org/abs/1911.05248
https://arxiv.org/pdf/2010.03058.pdf

Case study 2: Privacy trade-off with fairness.

(a) Accuracy vs Model type (b) DP model accuracy relative (c) DP model accuracy relative
to non-DP to non-DP
6 vs Subgroup size vs non-DP model accuracy
EmmLighter Sk.m 404 404
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80 1 o og
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eps=9.16 eps=5.69 0 500 1000 1500 2000 2500 3000 0 20 40 60 80
non-DP
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Figure 1: Gender and age classification on facial images.

Bagdasaryan et al.

Google


https://papers.nips.cc/paper/2019/file/fc0de4e0396fff257ea362983c2dda5a-Paper.pdf

Google

Beyond “Algorithmic bias
is a data problem.”

Algorithms do not simply
impartially reflect
biases. Choices we make
when we model can amplify
or minimize harm.

This is because disparate
harm is not held static
while other properties are
optimized.

Fairness - imposes
constraint on
optimization that
reflects societal
norms of what is fair.

Model Compression -
compact machine learning
models to workin
resource constrained
environments.

Model fragility and
security - deploy secure
models that protect user
privacy.



The known unknowns

Chapter 4: Interpretability



Interpretability tools aim to provide insight into model behavior. Enable
auditing of other desirable properties such as fairness and robustness.

Model

Interpretability -
reliable
explanations for

model behavior.

“Coo
0g ©
og o
\ h
-’[

Fairness - imposes
constraint on
optimization that
reflects societal
norms of what is fair.

Model Compression -
compact machine learning
models to work in
resource constrained
environments.

Model fragility and
security - deploy secure
models that protect user
privacy.



Emphasis we place on interpretability will depend on multiple factors

Trade-off with other

Sensitive domain model desiderata

Historical performance

1
: Is historical data of
1 model behavior in

-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

e

Can the model

|

: | Does improving
' adversely impact

:

|

|

I interpretability jeopardize
| other desirable properties

A o . i different test
* I I'e'_ modadel security or 1 conditions limited?
privacy?

|
l e e e e e e e e e e e = = — J e e e e e e e e e e e e e e e e e e b e e e = = = = = — |

human welfare?

Google



Criteria for what is meaningful as an interpretable tool will deep
upon our vantage point and downstream tasks

~0)a

Domain Expert End Consumer

Google



Vantage point also impacts the type of interpretability tooling
that is most useful.

Specialist: Will want to Deployment engineer: Will

End user: Will place the model want to.gain.insight Into
always want to explanation within domain shift, surface

challenging. Automatically
surface candidates for
additional annotation. Audit
any model errors.

___________________________

explanation for
their data point.

an individual
explanation and global

: know the :
i i ranking desirable.

| : |
a : a
: ¥ |
[ o :
I : : :
. I |

. relative context. Both | examples which are most .
| : |
I |

: 3 ’
[ o :
I : : :
| N |

A local explanation often fails to provide
enough context for actionable downstream
decision making.

Google



Understanding how model behavior aligns/diverges from human
knowledge has become even more paramount.

1) We have chosen functional forms that delegates
feature representation to the model - harder
to extract feature importance estimates.

2) Models are widely deployed in settings where
human welfare can be impacted adversely.

3) The size of modern day datasets mean it 1is

critical we provide tools which surface what
is most critical for human inspection.

Google



Interpretability does not require explaining everything about a model.

- Goal is to gain intuition
into model behavior

- We are unlikely to ever
sign off an a model as
interpretable.

Google



Building Interpretable Post-hoc Interpretability

Models Methods
Most research has focused
here. )
| Mc¥ o o : | 1. Neuron/weight
2. Regularization of | importance
| weights during | 2. Input feature
tralning to | importance
condition heat map 3. Outlier detection

properties.

______________________________________________

Visualization/Human guided
investigations

Google



1: Model Distillation

Distill the knowledge of a large
neural network into a

functional form considered

more interpretable.

(note: hard to compete in

accuracy) Distilling a Neural Network Into a Soft

Decision Tree [[Frosst and Hinton , 2017]].

[[Ba et al. 2014, Hinton et al,, 2015, Frosst and Hinton , 2017, Wang and Rudin, 2015, Tan et al. 2018]]

Google



2: Visualization tools reduce high dimensionality of deep neural networks

¥ o P hens N O
% 5 PRI W N
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(b) Visualization by Sammon mapping.

Figure 2: Visualizations of 6,000 handwritten digits from the MNIST data set.

t-Distributed Stochastic Neighbor
Embedding (t-SNE)
[[van der Maaten and Hinton, 2008]

Google

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Visualizing the loss landscape of
deep neural networks

[[oaper]]


https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

3: Agent Based Exploration

ﬂ

®» W&ﬁ?eo

RN}

The agents can sense distance to The agents can grab and move The agents can lock objects in place.
objects in front of them. Only the team that locked an object
can unlock it.

The agents can move by setting a The agents can see objects in their
force on themselves in the x and y line of sight and within a frontal cone. objects, walls, and other agents

directions as well as rotate along the around them using a lidar-like sensor.

z-axis.

Google Baker et al, 2019 (link)


https://arxiv.org/abs/1909.07528

4. Estimates of feature importance

Local Feature Importance Global Feature Importance Weights and Activations

Google



4.1. Local Feature Importance

Estimates the feature importance of the attributes in a data example to a
single model prediction.

[T 'S0 Al 555 G B e et . e i il P TS SN et e il e et 1
. radient * o y _—
gradient | 9" abs value clipping signal attribution  smoothgrad
image
Grdlent | Gradlent'lmage Absolute Value GuidedBackprop Integrated Gradients SmoothGrad

Clipping

Gradient*Image

i T ke
} ‘y_"'»‘,‘?" e

[Erhan et al,, 2009, Simonyen et al.,2013, Springenberg et al., 2015, Fong and Vedaldi 2017, Sundararajan et al. 2017, Smilkov et al,,
Google2017., many more...]



4.2: Global Feature Importance

Estimates the feature importance of the attributes to the overall decision boundary.
What examples does the model find challenging or easy to learn?

Lowest VOG Highest VOG
plastic bag

Non-PIE PIE

Estimating Example Difficulty using Variance of
Gradients, Agarwal* and Hooker*, 2020 What does a compressed deep neural
network forget? Hooker et al. 2020

Google



4.3: Weight and Activations

Estimates the role or importance of individual neurons or weights.

Click to delete neurons
!

Q.
LABRADOR RETRIEVER v| & Oyu,o": N
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122 1.24 1.32
Input Hidden layer Output
-0.40 -0.27 0.13
. Al ¥
Neuron interpretation [[Olah,C et al, 2017 ] Weight/layer ablation studies

[[Morcos A. et al., 2018]]
Google



A large amount of interpretability research for deep neural
networks has focused on local feature importance.

Global Feature Importance Weights and Activations

r

Google



De -
it % An interpretable

A explanation of a
model prediction

Model Mmust be both:
Explanation meaningful to a
human + an
\/
“Coo
X
O O N

accurate reflection
of the model.




Key open challenges in interpretability:

1)

2)

3)

Google

Meaningful does not equate with reliable -
identifying failure points in explanations.

Disproportionate emphasis on feature importance
at the end/after training.

Providing both global and local explanations of
model behavior that are scalable to deployment
settings.



Closing Thoughts (and Q&A)

Thanks for the invite Chip!



Questions?

Estimating Example Difficulty using Variance
of Gradients Chirag Agarwal* Sara Hooker*

[[Link]]

What do compressed deep neural networks
forget?, Sara Hooker, Aaron Courville, Gregory
Clark, Yann Dauphin, Andrea Frome [[link]]

Characterizing Bias in Compressed Models
Sara Hooker*, Nyalleng Moorosi* Gregory Clark,
Samy Bengio, Emily Denton [[link]]

More work -- links in the slides. Feel free to email
me for a copy.

Final takeaways:

Beyond test-set accuracy - It is not
always possible to measure the
trade-offs between criteria using
test-set accuracy alone.

The myth of the compact, private,
interpretable, fair model - Desiderata
are not independent of each other.
Training beyond test set accuracy
requires trade-offs in our model
preferences.

Relative vs local feature importance -
human understanding is relative,
promising work to surface subset of
data points that are more/less
challenging to aid understanding.

Email: shooker@google.com


https://drive.google.com/file/d/1-jbmOy42dn3t7qyIhHpzA1TxKKYtUUwn/view?usp=sharing
https://arxiv.org/abs/1911.05248
https://arxiv.org/abs/2010.03058

